|
小东江水系河流沉积物磷素赋存形态及其环境意义 |
Phosphorus forms in sediments of Xiaodongjiang River and its environmental importance |
投稿时间:2023-11-22 |
DOI:10.13254/j.jare.2023.0755 |
中文关键词: 小东江,磷赋存形态,人类活动,磷来源 |
英文关键词: Xiaodongjiang River, phosphorus form, anthropogenic activity, phosphorus source |
基金项目:茂名市茂南区生态环境保护治理总体技术服务项目(2023-DFKY-0105);高州市农业面源污染治理与监督指导试点项目(二次)(E22M2000AL) |
作者 | 单位 | E-mail | 毛珊珊 | 新疆师范大学地理科学与旅游学院, 乌鲁木齐 830054 中国环境科学研究院, 北京 100012 | | 张秋英 | 中国环境科学研究院, 北京 100012 | | 李曹乐 | 中国环境科学研究院, 北京 100012 | | 李兆 | 中国科学院地理科学与资源研究所, 北京 100101 | liz.18b@igsnrr.ac.cn | 张宇军 | 广东省茂名生态环境监测站, 广东 茂名 525000 | | 李发东 | 中国科学院地理科学与资源研究所, 北京 100101 中国科学院大学资源与环境学院, 北京 100190 | | 舒旺 | 中国科学院地理科学与资源研究所, 北京 100101 | | 王登超 | 中国环境科学研究院, 北京 100012 | | 郝帅 | 新疆师范大学地理科学与旅游学院, 乌鲁木齐 830054 | haoshuai1869@163.com |
|
摘要点击次数: 432 |
全文下载次数: 307 |
中文摘要: |
河流磷(P)主要来源于底泥内源释放和外源输入,为探讨河流沉积物-水界面磷赋存形态组分及影响因素,本研究以华南地区典型河流小东江为研究对象,采集水体和沉积物样品,分析其磷赋存形态。采用连续提取法逐步进行提取,结合土地利用类型,探究沉积物-水中磷赋存形态的组成、分布特征及潜在生物可利用性,辨识沉积物中磷赋存形态的来源。结果表明,水体总磷浓度为0.13~0.33 mg·L-1,水体无机磷占水体总磷的64.79%~94.78%。沉积物总磷平均含量为219.44 mg·kg-1,沉积物无机磷(占比63.48%)是沉积物总磷的主要表现形式。沉积物无机磷总体表现为铁铝结合态无机磷(44.64%)>潜在活性无机磷(31.40%)>钙结合态无机磷(19.83%)>弱吸附态无机磷(4.12%);沉积物有机磷总体表现为非活性有机磷(46.39%)>中活性有机磷(27.03%)>潜在活性有机磷(19.05%)>弱吸附态有机磷(1.72%)。源解析结果表明:沉积物无机磷与铁铝结合态无机磷、潜在活性无机磷、钙结合态无机磷、中活性有机磷呈显著正相关(P<0.001),生活污水排放、工业废水、农田退水等陆源输入是导致铁铝结合态无机磷含量高的主要因素。相关性分析结果表明,铁铝结合态无机磷与潜在活性有机磷、钙结合态无机磷、非活性有机磷呈显著正相关(P<0.01),表明其来源具有一定相似性。沉积物磷释放通量为0.011~0.394 mg·m-2·d-1,整体上小东江沉积物表现为磷素的“源”,生物直接可利用磷含量较高且空间差异大,这一趋势与人类活动密切相关。 |
英文摘要: |
Phosphorus(P)in river mainly comes from endogenous release and exogenous input of sediment. To explore the forms and influencing factors of phosphorus in river sediment-water interface, this study collected water and sediment samples from Xiaodongjiang River(a typical river in south China)to analyze the P forms. The composition, distribution characteristics, and potential bioavailability of P in sediment-water were explored by a continuous extraction method, combined with land use types to identify the source of P in sedimentwater. The total P concentration in water was 0.13–0.33 mg·L-1, and the inorganic P in water accounted for 64.79%–94.78% of the total P concentration in water. The average content of total P in sediments was 219.44 mg·kg-1, and inorganic P content(accounting for 63.48%) was the major form of total P content in sediments. The overall trend of the inorganic P content was as follows:aluminum-bound inorganic P(44.64%)>potentially active inorganic P(31.40%)> calcium-bound inorganic P(19.83%)>weakly adsorbed inorganic P(4.12%). The overall trend of sediment organic P as:inactive organic P(46.39%)>moderately active organic P(27.03%)>potentially active organic P (19.05%)>weakly adsorbed organic P(1.72%). The source apportionment results showed that total P content significantly positively correlated with aluminum-bound inorganic P, potentially active inorganic P, calcium-bound inorganic P and moderately active organic P (P<0.001). Terrestrial inputs such as domestic sewage discharge, industrial wastewater and farmland drainage were the chief factors leading to high iron- aluminum-bound inorganic P content. Correlation analysis showed a significant positive correlation between ironaluminum-bound inorganic P and potentially active inorganic P, calcium-bound inorganic P, and inactive organic P(P<0.01), indicating that their sources were similar. The P release flux of sediment was 0.011–0.394 mg·m-2·d-1, and the sediment was“source”overall. The bioavailable P was high and the spatial difference was large, closely related to anthropogenic activities. |
HTML
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|