文章摘要
大气CO2浓度和温度升高对不同施氮量粳稻叶绿素荧光特性的影响
Effects of elevated atmospheric CO2 concentration and temperature on chlorophyll fluorescence characteristics of japonica rice with different nitrogen applications
投稿时间:2025-01-17  修订日期:2025-06-07
DOI:
中文关键词: 水稻  CO2浓度  温度升高  氮肥  叶绿素荧光
英文关键词: Rice  CO2 concentration  elevated temperature  nitrogen fertilizer  chlorophyll fluorescence
基金项目:国家自然科学基金面上项目(42375114,42275129);江苏省研究生科研创新计划项目(KYCX24_1451);江苏省大学生创新创业训练计划项目(202410300203Y)。
作者单位邮编
赵婧 南京信息工程大学农业与生态气象江苏省高校重点实验室,生态与应用气象学院 210044
曹琰梅 长沙国家农业气象试验站 
柯浩楠 湖南省气象局技术装备中心 
何昊 南京信息工程大学农业与生态气象江苏省高校重点实验室,生态与应用气象学院 
刘淼 南京信息工程大学农业与生态气象江苏省高校重点实验室,生态与应用气象学院 
吴荣军 南京信息工程大学农业与生态气象江苏省高校重点实验室,生态与应用气象学院 
李琪 南京信息工程大学农业与生态气象江苏省高校重点实验室,生态与应用气象学院 
胡正华* 南京信息工程大学农业与生态气象江苏省高校重点实验室,生态与应用气象学院 210044
摘要点击次数: 63
全文下载次数: 0
中文摘要:
      大气CO2浓度和温度升高对作物光合作用产生重要影响。水稻作为全球重要粮食作物,其光合作用效率更与氮肥供应直接相关,叶绿素荧光参数是量化PSII光能利用与胁迫响应的关键指标。本研究旨在探究大气CO2浓度和温度升高对不同施氮量水稻叶绿素荧光特性的影响。利用开顶式气室(OTC)组成的CO2浓度和温度升高自动调控平台,以粳稻南粳9108为试验材料,主处理为:背景CO?浓度和温度(CK)、CO2浓度增加200 μmol·mol-1(C+)、气温升高2℃(T+)、CO2浓度升高200 μmol·mol-1和气温升高2℃(C+T+)。副处理为氮肥水平:0 kg·hm?2(N0)、150 kg·hm?2(N15)、180 kg·hm?2(N18)、210 kg·hm?2(N21)。采用连续激发式叶绿素荧光仪测定水稻叶片的叶绿素荧光参数。结果表明,在N0条件下,与CK相比,C+使抽穗-灌浆期的水稻叶片Fv下降13.8%,T+使拔节-孕穗期的Fv下降11.2%,C+T+使拔节-孕穗期的Fv和Fv/Fo分别下降18.4%和47.5%。在N15条件下,T+使抽穗-灌浆期的Fo上升25.0%;在N18条件下,C+使拔节-孕穗期的Fv/Fm上升8.5%。在N21条件下,C+T+使拔节-孕穗期水稻叶片的Fv/Fm下降5.7%。此外,施氮处理对水稻SPAD值有显著影响,随着施氮量的增加,水稻的SPAD值显著提高。在N21条件下,水稻的SPAD值较N0增加了20.5%,表明施氮有助于提高水稻叶片的叶绿素含量,从而增强光合作用潜力。综上,CO2浓度和温度升高会损伤水稻叶片的光系统Ⅱ,抑制其电子传递和光化学效率,而施氮可以有效缓解这种负面影响,因此在未来气候变化背景下,通过优化氮肥施用,进一步调控水稻光合效率。
英文摘要:
      Elevated atmospheric CO2 concentration and temperature significantly impact crop photosynthesis. As a globally important staple crop, rice's photosynthetic efficiency is closely related to nitrogen fertilizer supply. Chlorophyll fluorescence parameters are key indicators for quantifying PSII light energy utilization and stress responses. This study aims to explore the effects of elevated atmospheric CO2 concentration and temperature on the chlorophyll fluorescence characteristics of rice under varying nitrogen application levels. An automatic CO2 concentration and temperature control platform composed of open-top chambers (OTC) was used, with Japonica rice cultivar Nanjing 9108 as the experimental material. The main treatments included: background CO2 concentration and temperature (CK), elevated CO2 concentration by 200 μmol·mol-1 (C+), elevated temperature by 2°C (T+), and both CO2 concentration elevated by 200 μmol·mol-1 and temperature elevated by 2°C (C+T+). Sub-treatments involved nitrogen fertilizer levels: 0 kg·hm?2 (N0), 150 kg·hm?2 (N15), 180 kg·hm?2 (N18), and 210 kg·hm?2 (N21). A continuous excitation chlorophyll fluorometer was used to measure the chlorophyll fluorescence parameters of rice leaves. The results showed that under N0 conditions, compared to CK, C+ led to a 13.8% decrease in Fv during the heading-grain filling stage, T+ caused an 11.2% decrease in Fv during the elongation-booting stage, and C+T+ resulted in a 18.4% decrease in Fv and a 47.5% decrease in Fv/Fo during the elongation-booting stage. Under N15 conditions, T+ increased Fo by 25.0% during the heading-grain filling stage. Under N18 conditions, C+ led to an 8.5% increase in Fv/Fm during the elongation-booting stage. Under N21 conditions, C+T+ caused a 5.7% decrease in Fv/Fm during the elongation-booting stage. Additionally, nitrogen application had a significant effect on the SPAD values of rice, with SPAD values increasing significantly as nitrogen application increased. Under N21 conditions, the SPAD value increased by 20.5% compared to N0, indicating that nitrogen application helps improve chlorophyll content in rice leaves, thereby enhancing photosynthetic potential. In summary, elevated CO2 concentration and temperature damage the rice leaves photosystem II, inhibiting electron transport and photochemical efficiency. However, nitrogen application can effectively mitigate these negative effects. Therefore, in the context of future climate change, it is essential to optimize nitrogen fertilizer use to further regulate rice photosynthetic efficiency.
HTML    View Fulltext   查看/发表评论  下载PDF阅读器