文章摘要
逯颖,张建辉,李文君,王雪蕾,郝新,谢成玉.长江经济带农业面源总磷污染时空特征分析[J].农业环境科学学报,2024,43(12):2752-2764.
长江经济带农业面源总磷污染时空特征分析
Analysis on spatiotemporal characteristics of total phosphorus of agricultural non-point source pollution in the Yangtze River Economic Belt
投稿时间:2024-10-10  
DOI:10.11654/jaes.2024-0935
中文关键词: 总磷  DPeRs模型  长江经济带  降水  植被覆盖度
英文关键词: total phosphorus  DPeRs model  Yangtze River Economic Belt  precipitation  vegetation fraction
基金项目:国家自然科学基金联合基金项目(U23A2015)
作者单位E-mail
逯颖 生态环境部卫星环境应用中心, 北京 100094  
张建辉 生态环境部卫星环境应用中心, 北京 100094  
李文君 生态环境部卫星环境应用中心, 北京 100094  
王雪蕾 生态环境部卫星环境应用中心, 北京 100094 wxlbnu@163.com 
郝新 生态环境部卫星环境应用中心, 北京 100094  
谢成玉 生态环境部卫星环境应用中心, 北京 100094  
摘要点击次数: 702
全文下载次数: 563
中文摘要:
      为了研究长江经济带的总磷时空分布特征及自然因子与总磷排放的驱动关系,探明总磷排放与自然因素的变化规律。本文基于DPeRS模型,对长江经济带2016—2022年间农业面源总磷污染进行遥感像元尺度时空评估,结合降水和植被覆盖度两类关键自然因子,定量分析自然因子对总磷排放强度的相关性。结果表明:长江经济带的总磷排放从1.21×105 t下降至4.69×104t,减少比例为61.3%,总磷排放强度呈降低趋势的区域面积是呈增加趋势区域面积的4倍;总磷排放强度与降水的平均相关系数为0.27,与植被覆盖度的平均相关系数为-0.32,偏相关性统计结果表明7年间植被覆盖度对总磷排放强度的响应程度高于降水;自然因子驱动分析结果表明,总磷排放受降水因子主导的区域分布在江苏南部、安徽中部、湖北东部和江西南部等中东部地区,受植被覆盖度因子主导的区域分布在四川东部,其余地区为其他因素主导,表明人为因素对农业面源总磷排放可能产生更大影响。研究表明,2016—2022年间长江经济带农业面源总磷排放整体呈下降趋势,贵州、安徽和江西等省份下降速率较快,且长江经济带总磷排放强度与植被覆盖度的相关性大于降水。
英文摘要:
      This study aims to elucidate the spatial-temporal distribution patterns of total phosphorus(TP)emissions across the Yangtze River Economic Belt(YREB)and to clarify the driving relationships between TP emissions and natural factors. Employing the DPeRS model, this research conducted a pixel-scale spatiotemporal assessment of agricultural non-point source TP pollution in the YREB from 2016 to 2022. Precipitation and vegetation fraction were selected as critical natural factors to quantitatively assess their correlations with TP emission intensity. Results indicate that:TP emissions in the YREB declined from 1.21×105 t tons to 4.69×104 tons, a reduction of 61.3%, with areas showing a decreasing trend in TP intensity comprising four times the area with increasing trends. The average correlation coefficient between TP emission intensity and precipitation was 0.27, while that with vegetation fraction was -0.32, with partial correlation analysis demonstrating that TP emission intensity was more responsive to vegetation fraction than to precipitation over the 7-year period. Regional driver analysis of natural factors showed that TP emissions in areas primarily influenced by precipitation were concentrated in southern Jiangsu, central Anhui, eastern Hubei, and southern Jiangxi, whereas regions influenced predominantly by vegetation fraction were located in eastern Sichuan. The remaining areas were dominated by other factors, indicating that human factors may have a greater impact on agricultural non-point source TP emissions. This study reveals a stronger correlation between TP emission intensity and vegetation fraction than precipitation in the YREB from 2016 to 2022, with overall improvements observed in TP pollution levels.
HTML    查看全文   查看/发表评论  下载PDF阅读器