文章摘要
马秀国,杨华薇,左强,马良,王胜涛,颜芳,张蕾,陈竹,陈延华.短期磷耗竭对褐土磷形态及细菌群落的影响[J].农业环境科学学报,2024,43(6):1312-1325.
短期磷耗竭对褐土磷形态及细菌群落的影响
Investigating the influence of short-term phosphorus depletion on phosphorus forms and the bacterial community in cinnamon soil
投稿时间:2023-10-09  
DOI:10.11654/jaes.2023-0818
中文关键词: 褐土  磷耗竭  有效磷  磷形态  土壤性质  细菌群落
英文关键词: cinnamon soil  P depletion  olsen-P  P form  soil property  bacterial community
基金项目:国家自然科学基金项目(32260804);北京市农林科学院团队促进项目(ZHS202301);贵州省科技计划项目(黔科合基础-ZK〔2022〕一般045);国家重点研发计划项目(2022YFD1901500,2022YFD1901505);贵州大学培育项目(贵大培育〔2020〕8号)
作者单位E-mail
马秀国 贵州大学农学院, 贵阳 550025
北京市农林科学院植物营养与资源环境研究所, 北京 100097 
 
杨华薇 北京市农林科学院植物营养与资源环境研究所, 北京 100097
东北农业大学资源与环境学院, 哈尔滨 150030 
 
左强 北京市农林科学院植物营养与资源环境研究所, 北京 100097  
马良 北京市农林科学院植物营养与资源环境研究所, 北京 100097  
王胜涛 北京市耕地建设保护中心, 北京 100074  
颜芳 北京市耕地建设保护中心, 北京 100074  
张蕾 北京市耕地建设保护中心, 北京 100074  
陈竹 贵州大学农学院, 贵阳 550025 274586492@qq.com 
陈延华 北京市农林科学院植物营养与资源环境研究所, 北京 100097 yhchen55@126.com 
摘要点击次数: 1094
全文下载次数: 1141
中文摘要:
      磷肥是作物高产的一个重要保障,然而过量施磷及其低利用率,易造成土壤中磷的累积,加剧磷矿耗竭和水体富营养化风险。因此研究土壤中累积磷素的耗竭特征,能为提高土壤累积磷的高效利用和降低环境风险提供理论依据。本研究以玉米为试验作物,以初始有效磷含量分别为 17.23 mg·kg-1( T1)、40.2 mg·kg-1( T2)、108.62 mg·kg-1( T3)和 181.33 mg·kg-1( T4)的褐土为供试土壤,通过盆栽试验,以连续种植5茬玉米的方式耗竭土壤中的累积磷,分析磷耗竭过程中土壤有效磷、磷形态(改进的Hedley法测定)、土壤理化性质和细菌群落结构的变化。结果表明,褐土磷耗竭过程中,有效磷含量总体呈下降趋势,而且初始含量越高,降幅越大。对于活性磷组分,T1处理显著升高,T2、T3和T4处理显著降低;中等活性磷含量降低,在耗竭中呈现先降低后升高的趋势,主要受稀盐酸提取态磷(Dil.HCl-Pi)和氢氧化钠提取态有机磷(NaOH-Po)的影响;稳定性磷含量升高,其中主要为浓盐酸提取态无机磷(Conc.HCl-Pi)和残渣态磷(Residual-P)含量升高。土壤有效磷和有机质与磷形态显著相关。磷耗竭过程影响了细菌群落结构和组成,T4处理最为明显。在门分类水平上,T4处理蓝细菌门(Cyanobacteria)等相对丰度在耗竭过程中显著下降;芽单胞菌门(Gemmatimonadota)等相对丰度在耗竭过程中显著上升 ;在属分类水平上 ,类诺卡氏菌属(Nocardioides)、norank_f_AKYG1722和节杆菌属(Arthrobacter)等相对丰度在耗竭过程中显著下降;norank_f_67-14和沙壤土杆菌(Ramlibacte)等相对丰度在耗竭过程中显著上升。属分类水平上相对丰度前40的多个细菌属与有效磷、活性磷、有机质显著相关。类诺卡氏菌属和节杆菌属等可能会促进中等活性磷转化为有效磷和活性磷;微枝形杆菌属和斯克尔曼氏菌属等则可能利用土壤中的稳定性磷。褐土磷耗竭会降低土壤有效磷含量,显著消耗土壤活性磷中的无机磷NaHCO3-Pi和中等活性磷中的有机磷NaOH-Po,增加土壤中稳定性磷的含量。土壤磷耗竭过程中,门分类水平上的放线菌门、厚壁菌门等菌门和属分类水平上的类诺卡氏菌属、微枝形杆菌属、和斯克尔曼氏菌属等菌属与有效磷间相互影响。本研究为褐土磷耗竭过程中磷形态转化及微生物调控提供了理论依据,为土壤累积磷的利用提供支撑。
英文摘要:
      Phosphorus(P)fertilizer is crucial for high crop yields. However, excessive P application and its low utilization efficiency can lead to the accumulation of P in the soil, exacerbating the depletion of P resources and the risk of water eutrophication. Therefore, studying the depletion characteristics of accumulated P in the soil can provide a theoretical basis for improving the efficient utilization of accumulated P in the soil and reducing environmental risks. This study employed corn as the experimental crop and cinnamon soil with initial Olsen-P contents of 17.23 mg·kg-1(T1), 40.20 mg·kg-1(T2), 108.62 mg·kg-1(T3), and 181.33 mg·kg-1(T4)as the tested soil. Through controlled pot experiments, we consecutively cultivated five cycles of corn to deplete the accumulated P content in the soil. We analyzed changes in soil Olsen-P content, P forms(determined using an improved Hedley method), soil physicochemical properties, and bacterial community structure during the process of P depletion. During the process of P depletion in cinnamon soil, the Olsen-P content showed an overall decreasing trend, with higher initial levels resulting in greater declines. In the context of the active P component, treatment T1 displayed a significant increase, whereas treatments T2, T3, and T4 showed substantial decreases. The moderate decreases in active P content, exhibiting a trend of initially decreasing and then increasing during depletion, were primarily influenced by Dil.HCl-Pi and NaOH -Po. The stable P content showed an increase, primarily ascribed to the increased levels of Conc. HCl-Pi and Residual-P. Notable correlations existed between the content of soil-Olsen-P, organic matter, and various P forms(NaHCO3-Pi, NaHCO3-Po, and NaOH-Pi). P depletion altered the structure and composition of bacterial communities, with the T4 treatment demonstrating the most significant effect. At the phylum level, the T4 treatment induced a significant decline in the relative abundance of Cyanobacteria throughout the depletion process. The relative abundance of Gemmatimonadota and other taxa exhibited a significant increase during the depletion process. At the genus level, there was a pronounced reduction in the relative abundance of Nocardioides, norank_f_AKYG1722 and Arthrobacter throughout the depletion process. The relative abundance of norank_f_67-14 and Ramlibacte exhibited a marked increase throughout the depletion process. Multiple bacterial genera, ranking among the top 40 in relative abundance, exhibited significant correlations with Olsen-P, active P, and organic matter content. Nocardioides and Arthrobacter genera demonstrated the potential to expedite the transformation of moderately active P into Olsen-P and active P. In the context of microbial ecology, genera such as Microvirga and Skermanella were likely to harness stable P reservoirs within the soil. The impact of cinnamon soil P depletion on soil P availability was elucidated, revealing a substantial reduction in inorganic P(NaHCO3-Pi)content within the active P fraction and organic P(NaOH-Po)in the moderately active P fraction. Concurrently, there was an observable elevation in the stable P content of the soil. Within the realm of soil P dynamics, the intricate process of P depletion resulted in a complex interplay among taxonomic entities. This included a symbiotic interaction between phyla such as Actinobacteria and Firmicutes and specific genera such as Nocardioides, Microvirga, and Skermanella. These interactions intricately shaped and modulated the availability of P in the soil matrix. This study provides a theoretical basis for the transformation of P forms and microbial regulation during the process of P depletion in cinnamon soil, offering support for the utilization of accumulated P in the soil.
HTML    查看全文   查看/发表评论  下载PDF阅读器