文章摘要
董欣竹,钱林波,龙颖,魏子斐,张文影,梁聪,陈梦舫.铁碳复合材料活化过氧化氢吸附-氧化萘的机理[J].农业环境科学学报,2022,41(6):1348-1356.
铁碳复合材料活化过氧化氢吸附-氧化萘的机理
Mechanism of naphthalene adsorption-oxidation within the iron-carbon composites activated hydrogen peroxide systems
投稿时间:2022-03-17  修订日期:2022-04-11
DOI:10.11654/jaes.2022-0253
中文关键词: 铁源    铁碳复合材料  吸附  氧化
英文关键词: iron sources  naphthalene  iron-carbon composites  adsorption  oxidation
基金项目:国家重点研发计划项目(2018YFC1803002);国家自然科学基金项目(42177239;41991330)
作者单位E-mail
董欣竹 中国科学院土壤环境与污染修复重点实验室(南京土壤所), 南京 210008
中国科学院大学, 北京 100049 
 
钱林波 中国科学院土壤环境与污染修复重点实验室(南京土壤所), 南京 210008
中国科学院大学, 北京 100049 
lbqian@issas.ac.cn 
龙颖 中国科学院土壤环境与污染修复重点实验室(南京土壤所), 南京 210008
西南科技大学环境与资源学院, 四川 绵阳 621002 
 
魏子斐 中国科学院土壤环境与污染修复重点实验室(南京土壤所), 南京 210008
西南科技大学环境与资源学院, 四川 绵阳 621002 
 
张文影 中国科学院土壤环境与污染修复重点实验室(南京土壤所), 南京 210008  
梁聪 中国科学院土壤环境与污染修复重点实验室(南京土壤所), 南京 210008
中国科学院大学, 北京 100049 
 
陈梦舫 中国科学院土壤环境与污染修复重点实验室(南京土壤所), 南京 210008
中国科学院大学, 北京 100049 
mfchen@issas.ac.cn 
摘要点击次数: 1949
全文下载次数: 2111
中文摘要:
      为探讨不同铁源对铁碳复合材料结构及其吸附-氧化萘污染的影响,分别以硫酸亚铁、氯化铁、硝酸铁、纳米零价铁和纳米四氧化三铁为铁源,葡萄糖为碳源,采用水热-碳热法合成了铁碳复合材料。采用比表面积测试、红外光谱仪、X射线衍射仪和电化学工作站分别测定材料的比表面积和孔结构、表面官能团、晶体结构和氧化还原能力,同时通过动力学实验研究不同复合材料吸附和活化过氧化氢氧化萘的效果。结果表明:Fe2SO4@C、FeCl3@C和Fe(NO3 3@C因较小的孔体积或较高的表面含氧官能团含量,而对萘的吸附去除率较低,且无法对萘的氧化起到活化作用。而nFe0@C和nFe3O4@C的孔体积较大,且生成结构态亚铁[Fe(Ⅱ)]和碳化三铁(Fe3C)活性物质,可通过吸附和活化过氧化氢氧化去除萘,其中nFe3O4@C对萘的去除效果最好,去除率达到63.7%。研究表明,使用固态铁源制备的铁碳复合材料,具有较低的极性、较大的孔体积以及结晶较好的铁活性物质,在萘污染水体修复中具有较大应用潜力。
英文摘要:
      To evaluate the influence of different iron sources on the structure of iron-carbon composites and adsorption-oxidation of naphthalene in groundwater, ferrous sulfate, ferric chloride, ferric nitrate, nano-zero-valent iron, and nano-magnetite were used as iron sources, and glucose was used as the carbon source to synthesize iron-carbon composites using hydrothermal and carbothermal methods. The specific surface areas and pore structures, surface functional groups, crystal structures, and redox capacities of the composites were determined using the Brunauer-Emmett-Teller test, infrared spectroscopy, X-ray diffraction, and electrochemical workstation, respectively. In addition, the effects of the adsorption and activation of hydrogen peroxide on the removal of naphthalene by different composites were studied via kinetic experiments. The results showed that the adsorption capacities of Fe2SO4@C, FeCl3@C, and Fe(NO3) 3@C composites to naphthalene were weak because of their smaller pore volumes or richer surface oxygen functional groups, which could not activate the oxidation of naphthalene. Large pore volumes and active substances of structural ferrous iron[Fe(Ⅱ)] and carbonized trioxide(Fe3C) were generated in the nFe0@C andnFe3O4@C composites, respectively, which could effectively remove naphthalene via adsorption and oxidation of activated hydrogen peroxide. The best naphthalene removal was achieved usingnFe3O4@C, with a removal efficiency of 63.7%. These results indicate that the iron-carbon composites prepared from solid iron sources possess low polarities, large pore volumes, wellcrystallized iron active substances, and great application potential in the remediation of naphthalene-contaminated water.
HTML    查看全文   查看/发表评论  下载PDF阅读器