文章摘要
减肥条件下生物质炭施用对水稻田土壤细菌多样性的影响
Effects of biochar addition on the microbial diversity of paddy soils under fertilizer reduction
Received:June 18, 2020  
DOI:10.13254/j.jare.2020.0327
中文关键词: 生物质炭,水稻田,根际土壤,细菌多样性,高通量测序
英文关键词: biochar, paddy soil, rhizosphere soil, microbial diversity, high throughput sequencing
基金项目:国家自然科学基金(51508366);江苏省自然科学基金项目(SBK2020022850);苏州昆山市科技计划项目(KN1807);江苏水处理技术与材料协同创新中心预研项目(XTCXSZ2019-3)
Author NameAffiliation
CHEN Chong-jun School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, China 
LING Xue-lin Agricultural Land Stock Professional Cooperative Association of Bacheng Kunshan, Suzhou 215311, China 
XING long Agricultural Land Stock Professional Cooperative Association of Bacheng Kunshan, Suzhou 215311, China 
FENG Jian Agricultural Land Stock Professional Cooperative Association of Bacheng Kunshan, Suzhou 215311, China 
WU Yu-xi Agricultural Land Stock Professional Cooperative Association of Bacheng Kunshan, Suzhou 215311, China 
FAN Jing Agricultural Land Stock Professional Cooperative Association of Bacheng Kunshan, Suzhou 215311, China 
SUN Yuan-bo School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China 
LIAO Fang-xin School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China 
Hits: 1320
Download times: 1375
中文摘要:
      为了研究肥料减施和水稻秸秆生物质炭添加对水稻田土壤细菌多样性的影响,采用MiSeq高通量测序分析技术,对不同施肥量(100%、90%、80%常规施肥)和添加水稻秸秆生物质炭(1%)的水稻田非根际和根际土壤进行了细菌多样性分析。结果表明,与非根际土相比,水稻根际微生物细菌多样性更加丰富。从门水平看,最主要是变形菌门,占34.85%~47.57%,添加生物质炭降低了变形菌门在非根际土中的丰度,而促进其在根际土中富集,肥料减施对变形菌门丰度的影响刚好相反,且减施肥料越多对变形菌门影响越大;酸杆菌门次之,占10.48%~19.42%,变化趋势与变形菌门相反。从属水平看,Unclassified Burkholderiaceae、Unclassified Subgroup 6、Unclassified bacterium 126等菌属在土壤中占比较高。典范对应分析(CCA)结果表明,优势菌群丰度与采样位置、肥料添加、生物质炭添加等环境因素存在一定的相关性。研究表明,不同减肥条件下(80%和90%)生物质炭的施用(1%)均会对土壤细菌多样性造成影响,其变化与采样位置、肥料减施量和生物质炭添加密切相关。
英文摘要:
      We studied the effects of rice straw biochar addition on the microbial diversity of a paddy soil under fertilizer reduction. The MiSeq high-throughput sequencing analysis technology was used to analyze the microbial diversity of the rhizosphere and bulk soil under different levels of fertilization application(100%, 90%, and 80% of the conventional fertilization) and rice straw biochar addition(1%). The results indicated that the microbial diversity of the rhizosphere was more abundant than that of the bulk soil. Proteobacteria was the dominant phylum of Gram-negative bacteria accounting for 34.85%~47.57%. Biochar addition could reduce the abundance of Proteobacteria in the bulk soil and promote it in the rhizosphere. However, the reduction of fertilizer had an opposite effect on the abundance of Proteobacteria, while the greater influence was evidenced with more fertilizer reduction. In addition, Acidobacteria accounted for 10.48%~19.42%, which had an opposite response to that of Proteobacteria. At the genus level, Unclassified Burkholderiaceae, Unclassified Subgroup 6, and Unclassified bacterium 126 accounted for a relatively high proportion or microorganisms in the rhizosphere and bulk soil. The results of the Canonical Correspondence Analysis(CCA) showed that the abundance of dominant bacteria was related to environmental factors such as sampling location, fertilizer treatment, and biochar addition. Our study showed that the different fertilizer reduction(80% or 90%) and rice straw biochar addition(1%) could influence the microbial diversity of the rhizosphere and bulk soil, which was closely related to sampling location, fertilizer reduction, and biochar addition.
HTML   View Full Text   View/Add Comment  Download reader
Close