2. 南京林业大学南方现代林业协同创新中心, 南京 210037;
3. 江苏省大丰麋鹿国家级自然保护区管理处, 江苏 盐城 224136;
4. 盐城市麋鹿研究所, 江苏 盐城 224136
2. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
3. Jiangsu Dafeng Milu National Nature Reserve, Yancheng 224136, China;
4. Yancheng Milu Institute, Yancheng 224136, China
滨海湿地位于海陆交错带,独特的水文条件和植被土壤特征,使得滨海湿地具有特殊的生态结构和过程,在维持区域乃至全球生态平衡和生物多样性方面具有不可替代的生态环境服务功能[1-2];同时,作为典型的脆弱生态敏感区,人类活动以及全球环境变化导致滨海湿地面积日趋下降,生态系统功能也逐渐退化[3-4]。相比其他生态系统,受周期性淹水与土壤高盐度的双重胁迫,加上径流输沙淤积或海浪冲蚀的干扰,滨海湿地生态系统植被结构较为简单,极易遭受生物入侵。相关研究表明,互花米草等外来植物的入侵,已经对滨海湿地生态系统的生物多样性和生态功能产生了多方面的威胁[5-6]。
互花米草作为一种全球性入侵种已引起广泛关注[7]。互花米草于20世纪70年代引入我国,由于其强大的适应性和扩散能力,随即开始在滨海地区大肆扩张,目前已占据我国北起辽宁、南至雷州半岛的广大沿海滩涂[7-8]。如江苏省沿海地区自1982年开始引种互花米草后,现已形成了国内面积最大的苏北互花米草盐沼湿地。1988年苏北互花米草盐沼面积仅为2.3 km2,目前江苏省互花米草面积已急剧扩张至187.1 km2,占全国海岸带米草总面积的54%;分布岸线长达410 km,约占江苏省海岸长度的47%[9]。
互花米草是典型的滨海湿地植被类型,作为外来物种,互花米草凭借广盐性、耐淹性、耐低氧性和很强的繁殖能力[10-12],向潮间带较低部位和土著植被群落扩展和入侵[10],其对我国海岸带的入侵现状及生态效应已成为当前研究热点。众多研究表明,互花米草会改变水动力学过程和沉积过程,进而对滨海湿地土壤形成和营养物质循环产生显著影响;同时,基于自身生理特性和竞争优势,互花米草还会改变入侵地生态环境,最终形成单一优势群落,显著降低生物多样性,导致原有滨海湿地生态系统生态结构和功能受到严重破坏,进而威胁到整个海岸环境与生态[13-16]。鉴于其入侵性和危害性,互花米草已被列入我国16种首批外来入侵物种名单。目前,国内外相关学者和管理部门已经普遍认识到互花米草入侵对生态环境的影响,并开展了大量相关研究[17-18],主要集中在互花米草生理特性[19-22]、入侵的竞争机制[23-25]、入侵对滨海湿地生物地球化学循环过程的改变[6, 14, 26-33]、入侵对滨海湿地生态系统结构和功能的影响[17, 34-36],及其生态防治技术[37-39]等方面。
湿地植物群落分布格局的生态水文驱动机制研究,是科学评估全球变化和人类活动背景下水文环境改变对湿地生态系统影响的基础和关键,也是生态水文学这一交叉学科的重点研究领域。植物作为湿地生态系统结构和生态环境功能的核心,是水文及其他环境因子综合作用的产物[40-42];水文环境的变化,将直接影响湿地植物的生理生态特征,改变其空间分布格局,进而影响湿地生态系统结构、过程及生态环境功能[43-44]。因此,本文针对滨海湿地典型入侵植物互花米草,从生态水文学关注的水文-植被关系及其响应方面,对国内外相关研究进行了梳理和总结。有助于深入理解湿地植物生态与水文机制的耦合关系,完善湿地生态水文学研究理论和研究内容,同时也为我国滨海湿地互花米草的生态防治提供科学依据。
1 水文因子对互花米草的影响及其生理生态响应水文情势作为湿地生态系统的首要决定因素,是湿地植被结构、物种多样性、生产力和生态演替的首要驱动因子。全球变化和人为活动对湿地的扰动不断加强,水文情势对湿地植被的影响也日益受到关注,特别是关于特定水文情势与优势植被空间格局关系的定量研究亟待进一步深化。对于滨海湿地而言,水文条件常常决定着植物的生长、物种分布和演替格局[45-47]。持续淹水会影响互花米草的生理过程,但后者可通过生理学和形态学方面的响应来适应这种水淹胁迫[48]。试验表明,持续淹水胁迫下,互花米草的株高、根系、地下生物量均受到一定程度的抑制[48];一定淹没条件下,互花米草株高的增长率会达到最大值,超过此淹没时长,互花米草的增长率将受到显著抑制;同时其叶面积也随淹没时长增加而呈显著减少的趋势[49]。Janousek等[50]通过控制实验发现互花米草生物量和幼苗数量与水淹条件存在显著的线性关系, 在高水位水淹条件下,互花米草地下生物量、细根和幼苗数量显著减少[51],Snedden等[52]通过水淹和盐分控制实验表明,高水位下互花米草地上和地下生物量随高程和持续淹水时间呈指数规律下降。在大尺度上,O′ Donnell等[53]利用遥感数据反演了美国佐治亚州滨海湿地互花米草28年的地上生物量动态,并对其驱动因素进行了分析,发现水位、平均海平面和降水量等因素与互花米草地上生物量显著相关。同时,水文条件也影响互花米草的生物量分配,水位升高条件下,互花米草地上生物量、地上分配比均相应增加;而低水位条件显著促进互花米草根系生长[54]。持续干旱将导致水生植物消失,取而代之的是旱生植物;而持续洪泛过程将导致湿生植物和挺水植物的空间扩展[55]。Magee等[56]研究发现最丰富的物种群落出现在中等水文条件,即使较小的水位变化或波动也足以导致湿地植物优势种群的转变。Smith等[57]通过长达一个生长季的持续淹水实验发现,持续水淹条件下,互花米草的种群密度下降了86%,同时株高也显著降低,实验表明长期的淹水条件可以消除互花米草。地下水位也会对滨海湿地的植被分布产生影响,Thibodeau等[58]对美国南卡罗莱纳州一处盐沼湿地的研究发现,地下水是决定盐沼湿地植被分布的重要因素,不同地区的地下水流向决定了表层土壤的盐分含量,从而决定着植被的分布。Xiao等[59]认为土壤水分是影响潮汐湿地植被分布的重要因素,据此建立了长江三角洲河口湿地的土壤水动态模型,并与互花米草的分布进行耦合分析,表明长江三角洲互花米草的分布很大程度上受土壤水分的影响。Millard等[60]认为地表高程、淹水频率及持续时间和潮汐幅度等水文条件是决定湿地植被群落分布的主要驱动因素。从目前的研究结果来看,由于各研究的尺度差异和研究方法的不同,最终结果仍存在较大差异。尤其是人工控制实验中,实验条件与野外实地环境(如温度、盐分等)显著不同,致使实验结果的不确定性显著增加。基于野外样地的大规模连续监测可获取自然状态下的理想数据,但工作量大,且调查采样工作极易受天气、潮汐等因素影响,如何克服这些不利因素,保障数据的时空连续性和精确性,是今后相关研究需要克服的一个关键问题。
2 土壤盐分对互花米草的影响及其生理生态响应土壤作为湿地植被的基质,在一定程度上也会影响乃至决定湿地植物的空间格局。土壤因子可以通过控制植物物种的存活率来影响植被分布,尤其在滨海湿地生态系统中,湿地植被的分布,除受水位的影响外,盐分也是决定滨海湿地植被生理生态特征及空间分布的一个非常重要的因素[45-47, 61-62]。海水潮汐作用越强,则土壤的盐度越高,潮汐带来的营养元素也越丰富。因此,一定盐分范围内,盐分含量越高,互花米草长势越好,生物量也越大;超过这个盐分范围后,将对互花米草的生长产生抑制作用[63-64]。Carrion[65]通过移栽控制实验研究高盐分胁迫下互花米草的生理响应也发现类似结果,在1.5%的盐分浓度下,互花米草的嫩芽高度显著高于土壤含盐量为0的对照处理。Hessini等[22]通过控制水分条件实验发现,互花米草在50%田间持水量时仍能保持存活,只不过光合作用、气孔导度等显著下降,通过渗透调节,互花米草展现出较强的弹性调节能力,水分利用率显著增加,表明互花米草可以在干旱环境下生存。Li等[66]利用控制实验研究了水淹和高盐分环境下互花米草的生理响应,发现在两种情况下互花米草均有较高的适应性,在低盐分或中等盐分条件下,互花米草长势良好,高盐分条件下,互花米草通过泌盐现象仍可适应。因此,在未来海平面上升的情况下,我国滨海湿地互花米草仍会进一步扩张。Tang等[67]通过盐分控制实验发现在0~2%的土壤盐分含量范围内,土著种的生长和繁殖能力随着盐分的增加而下降,但入侵种互花米草的生长和繁殖却随着盐分增加而增强,这说明互花米草能在高盐度的光滩上成功扩散。研究还发现,在盐分0.7%左右,本地种生长速率很高,具有明显的竞争优势,此时互花米草无法取代土著种,土著种群落在低盐区相对稳定。但是,随着盐分的增加,互花米草的生长速率开始增大,在盐分高于1.1%时互花米草具有显著的竞争优势。Verrill[68]通过研究发现,与水文条件相比,土壤盐分是驱动滨海湿地植被变化的首要因子。He等[69]对长江三角洲河口地区湿地植物及其环境因子的研究也发现,土壤盐分是控制植被分布的首要因子,其次是高程因素。Moffett等[70]分析了San Francisco湾盐沼湿地中植被格局与水文和土壤因素之间的关系,认为在高程、距潮沟距离、土壤含水量、土壤盐分等要素中,土壤含水量和土壤盐分是决定盐沼湿地植被分布的决定性因子。White[71]通过交互移植实验证明,互花米草群落对于盐分的变化相当敏感,当盐分增高时,互花米草的扩展速度显著加快。Janousek等[72]基于物种数、覆盖度和物种丰富度等生态因子与土壤盐分、粒度、土壤氮和地表高程等环境要素,采用层次划分、分类和物种累积曲线等分析方法,研究了群落结构与环境梯度的相对重要性,研究表明土壤盐分和高程影响大多数植物物种的变化;水文条件、土壤氮含量和土壤黏粒含量通常居于次要地位;局地盐分变化对物种构成有一定影响;水文条件对物种构成及物种丰富度的影响相对较小,研究认为高程和盐分是决定滨海湿地植被群落结构的首要因素。赵欣胜等[73]研究发现对于黄河三角洲滨海湿地植物而言,土壤养分与盐分是决定植被发育演替的主要因素,其中植被演替方向主要受土壤盐分控制,而植物的生长发育主要受土壤养分含量的影响。湿地植物因其所处生态位不同,对土壤环境因子的需求也不相同,因此,湿地环境因子的变化决定了不同植被的竞争结果。芦苇在淹水较弱和低盐度土壤环境条件下生长较好,而互花米草适宜生长在淹水较强与高盐环境,因此芦苇主要分布在高程较高的滩涂湿地带,而互花米草主要分布在近水中低潮滩带[74]。Snedden等[75]在路易斯安那滨海湿地植物群落类型与河口水文机制之间的关系研究中,采用k-means聚类算法和指示物种分析法分析了植物群落类型及其指示物种,结果发现在物种丰富度和盐分之间存在显著的负相关关系,群落类型CCA分析表明盐分和潮汐水位是植物群落构成的主要驱动因素。尽管大量研究均表明土壤因子与互花米草空间分布存在一定的相关关系,但是相关研究仍不够深入,尤其缺乏对互花米草与土壤盐分空间分异格局的耦合关系的深入探讨。
3 互花米草的空间格局及生物量反演随着遥感技术的不断发展和地理信息系统(GIS)技术的不断完善,关于互花米草的空间动态研究也越来越趋向于精确化。受潮汐过程影响,互花米草分布区域大多位于潮间带的中上部位[76-77]。自然条件下互花米草的扩张受气候、地貌过程、水文过程、植被类型及种间竞争的影响,表现出明显的带状特征[78]。李屹等[79]利用15期Landsat影像,结合Google Earth影像,采用最大似然分类法提取了福建漳江口红树林国家级自然保护区红树林与互花米草盐沼的近30年历史变化信息,用于研究红树林和互花米草盐沼之间的空间竞争规律。姚红岩等[80]基于互花米草和芦苇不同物候期的光谱特征,提出了一种将二者生长物候差异与其光谱特征相结合,运用实测剖面观测数据确定光谱指标和阈值的综合提取方法,实现了互花米草-芦苇混合交错带的提取,在此基础上揭示了互花米草与芦苇在不同季节的竞争状况,为不同类型植被信息的提取提供了新的思路。周在明等[81]基于SPOT 6影像,利用植被覆盖度和地上生物量估算了互花米草植株高度,该方法是对高空间分辨率光学影像应用研究的重要尝试。低空无人机遥感技术在中小尺度生态监测中具有明显的高精度优势。周在明等[82]基于可见光低空无人机影像数据,构建了土壤调整植被指数V-MSAVI,用于互花米草植被像元信息的提取。Li⁃ DAR的发展,为获取更精确的植被空间数据提供了技术保障。Collin等[83]利用LiDAR数据,基于高分辨率数字地形模型和数字表面模型分析,建立了归一化差分雷达植被指数模型NDLVIM,揭示了加拿大魁北克地区滨海湿地互花米草的分布格局,并对其生物量进行了反演。Wang等[84]利用LiDAR数据和高光谱数据,反演了江苏省大丰市滨海湿地互花米草的生物量,研究表明,利用高光谱数据和LiDAR数据融合的方法,可以准确监测滨海湿地互花米草生物量。Mil⁃ lard等[60]根据地表高程、淹水频率及持续时间和潮汐幅度等决定湿地植被群落分布的主要驱动因素,基于LiDAR数据和GIS分析方法,对加拿大Fundy湾滨海湿地恢复区中的优先恢复区域进行了甄选。可以预见,随着上述生态遥感技术和方法的不断发展,对于互花米草时空格局动态的监测将日益趋向精准化和连续化,使得从群落尺度上揭示互花米草的生态格局动态成为可能。
4 互花米草的空间格局动态预测及模拟综合现有众多湿地植物研究,小尺度上湿地植物种类、数量的研究已相对不是重点,在较大时空尺度上植被群落的演替及其生态水文驱动机制的量化研究将成为今后的研究热点。其中,水文机制变化-植被动态响应的模拟和预测研究已成为当今国际湿地生态水文研究的关键问题[85]。Milzow等[86]基于地下水埋深和植被分布之间的空间耦合关系,建立了地下水-植被分布模拟模型,对气候变化及不同管理情境下的湿地植被空间格局进行了预测。Snedden等[75]基于植物群落与盐分和潮汐水位的关系,采用多分类Logistic回归分析和Akaike信息论准则方法,对路易斯安那滨海湿地盐分和潮汐水位变化下9种植被群落的出现概率进行了预测,研究表明利用盐分和潮汐水位数据,可以对滨海湿地植被群落进行模拟和预测。王聪[87]认为驱动互花米草沼泽景观演变的主要土壤因子为土壤容重、土壤盐度和土壤水分,基于这些要素建立的模拟模型,能够从机理上揭示互花米草的动态。Huang等[88]基于遥感和GIS技术,利用元胞自动机模型,模拟了九段沙河口湿地互花米草的扩张动态,但该模型从机制上而言是基于互花米草扩张空间的历史过程的规律总结,进而利用该规律对其可能的扩张动态进行预测,模型本身并不能反映限制互花米草分布的水文和土壤理化因子的作用,从本质上应属经验模型。Zheng等[89]结合GIS分析方法和有限元胞自动机模型,对崇明东滩互花米草的扩张范围进行了模拟,模型综合考虑了潮汐水位、植被密度、植被分类以及潮沟等,与传统的元胞自动机模型相比,具有较高的精度,在一定程度上阐明了限制互花米草扩张的机制,但模型未考虑土壤盐分等环境因子,在应用上具有一定的局限性。综合现有相关研究,在对互花米草空间格局进行预测和模拟时,仅考虑一两个限制性环境因子来确定滨海湿地植被的分布是远远不够的,需要将滨海湿地水动力学过程、植物生理学过程、地形演化等过程综合起来,并运用遥感、数学模型,从而建立一个量化的预测模型[17, 90-91]。
5 结论及展望互花米草入侵已经对我国滨海湿地生态系统造成了巨大影响,研究互花米草入侵的生态水文学机制,有利于从理论上和方法上丰富和完善湿地生态水文学研究;同时研究结果也可为互花米草的生态防治和滨海湿地的可持续管理提供科学参考。综合国内外相关研究进展,结论如下:
(1)水文条件决定互花米草的生理特征、生物量及其分配、物种分布和演替格局。由于各研究的尺度差异和研究方法的不同,研究结果存在较大差异。
(2)盐分是影响和决定互花米草生理生态特征及空间分布的一个非常重要的环境因素,甚至某些条件下会成为滨海湿地植被变化的首要驱动因子,但互花米草分布与土壤盐分空间分异格局的耦合研究仍有待深入。
(3)低空无人机遥感、LiDAR数据、高光谱数据等生态遥感新技术和新方法的发展,使得从群落尺度上揭示互花米草的生态格局动态成为可能。
(4)植被群落的演替及其生态水文驱动机制的量化将成为今后的研究热点,在对互花米草空间格局进行模拟和预测时,需要综合考虑湿地水动力学过程、植物生理学过程、地形生态演化等过程。
综上所述,针对互花米草的入侵机制,尤其在深入揭示互花米草植被群落与水文、土壤等环境因子的量化关系的基础上,从机理方面深入揭示其入侵的内在生态水文驱动机制的报道仍不多见,相关研究亟需进一步加强。在今后的研究中,应结合野外定位观测和室内分析模拟方法,量化互花米草生理生态特征与水文、土壤等环境因子的耦合关系,确定互花米草植被群落分布的关键决定因子,探讨水文和土壤环境因子胁迫下互花米草植被群落的生理生态响应分布格局和演变趋势,进而预测互花米草的格局动态,从而为互花米草的生态防治及滨海湿地管理提供科学依据。
[1] |
Gedan K B, Silliman B R, Bertness M D. Centuries of human-driven change in salt marsh ecosystems[J]. Annual Review of Marine Science, 2009, 1: 117-141. DOI:10.1146/annurev.marine.010908.163930 |
[2] |
Brito A, Newton A, Tett P, et al. Temporal and spatial variability of microphytobenthos in a shallow lagoon[J]. Estuarine, Coastal and Shelf Science, 2009, 83(1): 67-76. DOI:10.1016/j.ecss.2009.03.023 |
[3] |
Comeaux R S, Allison M A, Bianchi T S. Mangrove expansion in the Gulf of Mexico with climate change:Implications for wetland health and resistance to rising sea levels[J]. Estuarine, Coastal and Shelf Science, 2012, 96: 81-95. DOI:10.1016/j.ecss.2011.10.003 |
[4] |
张晓龙, 李培英, 李萍, 等. 中国滨海湿地研究现状与展望[J]. 海洋科学进展, 2005, 23(1): 87-95. ZHANG Xiao-long, LI Pei-ying, LI Ping, et al. Present conditions and prospects of study on coastal wetlands in China[J]. Advances in Marine Science, 2005, 23(1): 87-95. DOI:10.3969/j.issn.1671-6647.2005.01.013 |
[5] |
Grosholz E D, Levin L A, Tyler A C. Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific estuaries[M]. Berkley: University of California Press, 2009.
|
[6] |
Page H M, Lastra M, Rodil I F, et al. Effects of non-native Spartina patens on plant and sediment organic matter carbon incorporation into the local invertebrate community[J]. Biological Invasions, 2010, 12(11): 3825-3838. DOI:10.1007/s10530-010-9775-y |
[7] |
An S Q, Gu B H, Zhou C F, et al. Spartina invasion in China:Implications for invasive species management and future research[J]. Weed Research, 2007, 47(3): 183-191. DOI:10.1111/j.1365-3180.2007.00559.x |
[8] |
Zhang Y, Huang G, Wang W, et al. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China[J]. Ecology, 2012, 93(3): 588-597. |
[9] |
李润祥.白脊管藤壶在如东互花米草盐沼的附着特征及其沉积效应[D].南京: 南京大学, 2014. LI Run -xiang. The settlement and spatial distribution of Fistulobalanus albicostatus and its deposition effect in the Spartina alterniflora marsh[D]. Nanjing: Nanjing University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10284-1016181428.htm |
[10] |
邓自发, 安树青, 智颖飙, 等. 外来种互花米草入侵模式与爆发机制[J]. 生态学报, 2006, 26(8): 2678-2686. DENG Zi-Fa, AN Shu-qing, ZHI Ying-biao, et al. Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alterniflora Loisel[J]. Acta Ecologica Sinica, 2006, 26(8): 2678-2686. DOI:10.3321/j.issn:1000-0933.2006.08.034 |
[11] |
胡伟芳, 张林海, 万斯昂, 等. 互花米草入侵闽江河口短叶茳芏湿地对沉积物硝化速率的影响[J]. 亚热带资源与环境学报, 2017, 12(3): 19-26. HU Wei-fang, ZHANG Lin-hai, WAN Si-ang, et al. Effects of Spartina alterniflora invasion on sediment nitrification in a Cyperus malaccensis marsh of the Min River estuary[J]. Journal of Subtropical Resources and Environment, 2017, 12(3): 19-26. DOI:10.3969/j.issn.1673-7105.2017.03.004 |
[12] |
Daehler C C, Strong D R. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA[J]. Biological Conservation, 1996, 78(1/2): 51-58. |
[13] |
赵紫檀, 郑洁, 吴则焰, 等. 互花米草入侵下红树林土壤微生物群落特征[J]. 森林与环境学报, 2017, 37(2): 169-173. ZHAO Zi-tan, ZHENG Jie, WU Ze-yan, et al. Features of mangrove soil microbial community with Spartina alterniflora invaded[J]. Journal of Forest and Environment, 2017, 37(2): 169-173. |
[14] |
Liu J, Han R, Su H, et al. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China[J]. Ecological Engineering, 2017, 106: 132-139. DOI:10.1016/j.ecoleng.2017.05.041 |
[15] |
陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制[J]. 植物生态学报, 2017, 41(4): 409-417. CHEN Quan, MA Ke-ming. Effects of Spartina alterniflora invasion on enrichment of sedimental heavy metals in a mangrove wetland and the underlying mechanisms[J]. Chinese Journal of Plant Ecology, 2017, 41(4): 409-417. |
[16] |
江旷, 陈小南, 鲍毅新, 等. 互花米草入侵对大型底栖动物群落垂直结构的影响[J]. 生态学报, 2016, 36(2): 535-544. JIANG Kuang, CHEN Xiao-nan, BAO Yi-xin, et al. Effect of Spartina alterniflora invasion on the vertical structure of microbenthic community[J]. Acta Ecologica Sinica, 2016, 36(2): 535-544. |
[17] |
Gao S, Du Y F, Xie W J, et al. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines[J]. Science China Earth Sciences, 2014, 57(11): 2567-2586. DOI:10.1007/s11430-014-4954-9 |
[18] |
Li B, Liao C, Dong Z X, et al. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects[J]. Ecological Engineering, 2009, 35(4): 511-520. DOI:10.1016/j.ecoleng.2008.05.013 |
[19] |
Xiao Y, Tang J B, Qing H, et al. Effects of salinity and clonal integration on growth and sexual reproduction of the invasive grass Spartina alterniflora[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2011, 206(8): 736-741. DOI:10.1016/j.flora.2010.12.003 |
[20] |
Liu H, Lin Z, Qi X, et al. The relative importance of sexual and asexual reproduction in the spread of Spartina alterniflora using a spatially explicit individual-based model[J]. Ecological Research, 2014, 29(5): 905-915. DOI:10.1007/s11284-014-1181-y |
[21] |
Liu H Y, Lin Z S, Zhang M Y, et al. Relative importance of sexual and asexual reproduction for range expansion of Spartina alterniflora in different tidal zones on Chinese coast[J]. Estuarine, Coastal and Shelf Science, 2017, 185: 22-30. DOI:10.1016/j.ecss.2016.11.024 |
[22] |
Hessini K, Ghandour M, Albouchi A, et al. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress[J]. Journal of Plant Research, 2008, 121(3): 311-318. DOI:10.1007/s10265-008-0151-2 |
[23] |
Ursino N. Modeling biomass competition and invasion in a schematic wetland[J]. Water Resources Research, 2010, 46: W8503. |
[24] |
陈正勇.互花米草与江苏海滨土著植物相对竞争力研究[D].南京: 南京师范大学, 2011. CHEN Zheng-yong. A study on the relative competitiveness of Spartina alterniflora and native plants in Jiangsu coastal wetlands[D]. Nanjing: Nanjing Normal University, 2011. http://d.wanfangdata.com.cn/Thesis/Y1922024 |
[25] |
仝川, 雍石泉, 孙东耀, 等. 互花米草不同器官水浸液对3种红树植物幼苗的化感作用[J]. 亚热带资源与环境学报, 2017, 12(3): 10-18. TONG Chuan, YONG Shi-quan, SUN Dong-yao, et al. Allelopathic effect of aqueous extracts from Spartina alterniflora on three mangrove species seedlings[J]. Journal of Subtropical Resources and Environment, 2017, 12(3): 10-18. DOI:10.3969/j.issn.1673-7105.2017.03.003 |
[26] |
Buhle E R, Feist B E, Hilborn R. Population dynamics and control of invasive Spartina alterniflora:Inference and forecasting under uncertainty[J]. Ecological Applications, 2012, 22(3): 880-893. DOI:10.1890/11-0593.1 |
[27] |
冯建祥, 黄茜, 陈卉, 等. 互花米草入侵对盐沼和红树林滨海湿地底栖动物群落的影响[J]. 生态学杂志, 2018, 37(3): 943-951. FENG Jian -xiang, HUANG Qian, CHEN Hui, et al. Effects of invasive Spartina alterniflora on the benthic faunal community in saltmarsh and mangrove wetland[J]. Chinese Journal of Ecology, 2018, 37(3): 943-951. |
[28] |
郑洁, 刘金福, 吴则焰, 等. 闽江河口红树林土壤微生物群落对互花米草入侵的响应[J]. 生态学报, 2017, 37(21): 7293-7303. ZHENG Jie, LIU Jin-fu, WU Ze-yan, et al. Soil microbial community of mangrove forests and its responses to the invasion of Spartina alterniflora in the Minjiang River estuary[J]. Acta Ecologica Sinica, 2017, 37(21): 7293-7303. |
[29] |
Wang M, Wang Q, Sha C Y, et al. Spartina alterniflora invasion affects soil carbon in a C3 plant-dominated tidal marsh[J]. Scientific Reports, 2018, 8(1): 628. DOI:10.1038/s41598-017-19111-1 |
[30] |
Jia D, Qi F, Xu X, et al. Co-regulations of Spartina alterniflora invasion and exogenous nitrogen loading on soil N2O efflux in subtropical mangrove mesocosms[J]. PLoS ONE, 2016, 11(1): e146199. |
[31] |
Gao J H, Feng Z X, Chen L, et al. The effect of biomass variations of Spartina alterniflora on the organic carbon content and composition of a salt marsh in northern Jiangsu Province, China[J]. Ecological Engineering, 2016, 95: 160-170. DOI:10.1016/j.ecoleng.2016.06.088 |
[32] |
Bu N S, Qu J F, Li Z L, et al. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China[J]. PLoS ONE, 2015, 10(3): e121571. |
[33] |
Zhou L Y, Yin S L, An S Q, et al. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China[J]. Clean-Soil, Air, Water, 2015, 43(4): 569-576. DOI:10.1002/clen.201300838 |
[34] |
Kulawardhana R W, Feagin R A, Popescu S C, et al. The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes[J]. Estuarine, Coastal and Shelf Science, 2015, 154: 48-57. DOI:10.1016/j.ecss.2014.12.032 |
[35] |
Alcántara C E Q. Carbon sequestration in tidal salt marshes and mangrove ecosystems[D]. San Francisco: University of San Francisco, 2014.
|
[36] |
Gao J H, Bai F L, Yang Y, et al. Influence of Spartina colonization on the supply and accumulation of organic carbon in tidal salt marshes of northern Jiangsu Province, China[J]. Journal of Coastal Research, 2012, 280(2): 486-498. |
[37] |
Tang L, Gao Y, Wang J P, et al. Designing an effective clipping regime for controlling the invasive plant Spartina alterniflora in an estuarine salt marsh[J]. Ecological Engineering, 2009, 35(5): 874-881. DOI:10.1016/j.ecoleng.2008.12.016 |
[38] |
林贻卿, 谭芳林, 肖华山, 等. 不同时期刈割对互花米草根系生理影响的研究[J]. 湿地科学, 2010, 8(4): 371-378. LIN Yi-qing, TAN Fang-lin, XIAO Hua-shan, et al. Effects of different mowing periods on physiology of Spartina alterniflora root system[J]. Wetland Science, 2010, 8(4): 371-378. |
[39] |
冯建祥, 宁存鑫, 朱小山, 等. 福建漳江口本土红树植物秋茄替代互花米草生态修复效果定量评价[J]. 海洋与湖沼, 2017, 48(2): 266-275. FENG Jian-xiang, NING Cun-xin, ZHU Xiao-shan, et al. Ecological restoration by native-invasive species replacement for mangrove wetlands in Zhangjiang River estuary FuJian[J]. Oceanologia et Limnologia Sinica, 2017, 48(2): 266-275. |
[40] |
Spieles D J. Early successional vegetation assembly in a spatially variable hydrologic regime[J]. Journal of Freshwater Ecology, 2013, 29(1): 141-152. |
[41] |
Sharpe P J, Baldwin A H. Wetland plant species richness across estuarine gradients:The role of environmental factors and the mid-domain effect[J]. Aquatic Botany, 2013, 107(9): 23-32. |
[42] |
Sterk M, Gort G, Klimkowska A, et al. Assess ecosystem resilience:Linking response and effect traits to environmental variability[J]. Ecological Indicators, 2013, 30(5): 21-27. |
[43] |
Chapin D M, Paige D K. Response of delta vegetation to water level changes in a regulated mountain lake, Washington State, USA[J]. Wetlands, 2013, 33(3): 431-444. DOI:10.1007/s13157-013-0401-5 |
[44] |
Tuchman E. Assessing the effects of climate change driven decreases in great lakes water levels on the distribution of three-square bulrush (Schoenoplectus Pungens)in Cecil Bay, Michigan[R]. Michigan: Biological Station, University of Michigan, 2013.
|
[45] |
Moffett K B, Gorelick S M. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences[J]. Water Resources Research, 2016, 52(3): 1729-1745. DOI:10.1002/2015WR017406 |
[46] |
Delaune R D, Pezeshki S R, Patrick Jr W H. Response of coastal plants to increase in submergence and salinity[J]. Journal of Coastal Research, 1987, 3(4): 535-546. |
[47] |
Burns T. Spartina alterniflora responses to flooding in two salt marshes on the eastern shore of Virginia[D]. Charlottesville: University of Virginia, 2015.
|
[48] |
古志钦, 张利权. 互花米草对持续淹水胁迫的生理响应[J]. 环境科学学报, 2009, 29(4): 876-881. GU Zhi-qin, ZHANG Li-quan. Physiological responses of Spartina alterniflora to long-term water logging stress[J]. Acta Scientiae Circumstantiae, 2009, 29(4): 876-881. DOI:10.3321/j.issn:0253-2468.2009.04.030 |
[49] |
肖强, 郑海雷, 叶文景, 等. 水淹对互花米草生长及生理的影响[J]. 生态学杂志, 2005, 24(9): 1025-1028. XIAO Qiang, ZHENG Hai-lei, YE Wen-jing, et al. Effects of waterlogging on growth and physiology of Spartina alterniflora[J]. Chinese Journal of Ecology, 2005, 24(9): 1025-1028. DOI:10.3321/j.issn:1000-4890.2005.09.010 |
[50] |
Janousek C N, Buffington K J, Thorne K M, et al. Potential effects of sea-level rise on plant productivity:Species-specific responses in Northeast Pacific tidal marshes[J]. Marine Ecology Progress Series, 2016, 548: 111-125. DOI:10.3354/meps11683 |
[51] |
Hanson A, Johnson R, Wigand C, et al. Responses of Spartina Alterniflora to multiple stressors:Changing precipitation patterns, accelerated sea level rise, and nutrient enrichment[J]. Estuaries and Coasts, 2016, 39(5): 1376-1385. DOI:10.1007/s12237-016-0090-4 |
[52] |
Snedden G A, Cretini K, Patton B. Inundation and salinity impacts to above-and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River deltaic plain:Implications for using river diversions as restoration tools[J]. Ecological Engineering, 2015, 81: 133-139. DOI:10.1016/j.ecoleng.2015.04.035 |
[53] |
O'Donnell J, Schalles J. Examination of abiotic drivers and their influence on Spartina alterniflora biomass over a twenty-eight year period using Landsat 5 TM satellite imagery of the central Georgia coast[J]. Remote Sensing, 2016, 8(6): 477. DOI:10.3390/rs8060477 |
[54] |
张晓敏, 唐运平, 宋文筠. 湿地水位梯度对互花米草生长特性的影响研究[J]. 海河水利, 2014(3): 54-56. ZHANG Xiao-min, TANG Yun-ping, SONG Wen-jun. Study of growth characteristics of Spartina alterniflora loisel to different water level gradient in constructed wetland[J]. Haihe Water Resources, 2014(3): 54-56. DOI:10.3969/j.issn.1004-7328.2014.03.019 |
[55] |
Stroh C, Steven D, Guntenspergen G. Effect of climate fluctuations on long-term vegetation dynamics in Carolina Bay wetlands[J]. Wetlands, 2008, 28(1): 17-27. |
[56] |
Magee T K, Kentula M E. Response of wetland plant species to hydrologic conditions[J]. Wetlands Ecology and Management, 2005, 13(2): 163-181. DOI:10.1007/s11273-004-6258-x |
[57] |
Smith S M, Lee K D. The influence of prolonged flooding on the growth of Spartina alterniflora in Cape Cod(Massachusetts, USA)[J]. Aquatic Botany, 2015, 127: 53-56. DOI:10.1016/j.aquabot.2015.08.002 |
[58] |
Thibodeau P M, Gardner L R, Reeves H W. The role of groundwater flow in controlling the spatial distribution of soil salinity and rooted macrophytes in a southeastern salt marsh, USA[J]. Mangroves and Salt Marshes, 1998, 2: 1-13. DOI:10.1023/A:1009910712539 |
[59] |
Xiao K, Li H L, Wilson A M, et al. Tidal groundwater flow and its ecological effects in a brackish marsh at the mouth of a large sub-tropical river[J]. Journal of Hydrology, 2017, 555: 198-212. DOI:10.1016/j.jhydrol.2017.10.025 |
[60] |
Millard K, Redden A M, Webster T, et al. Use of GIS and high resolution LiDAR in salt marsh restoration site suitability assessments in the upper bay of Fundy, Canada[J]. Wetlands Ecology and Management, 2013, 21(4): 243-262. DOI:10.1007/s11273-013-9303-9 |
[61] |
Silvestri S, Defina A, Marani M. Tidal regime, salinity and salt marsh plant zonation[J]. Estuarine, Coastal and Shelf Science, 2005, 62(1/2): 119-130. |
[62] |
Pennings S C, Grant M, Bertness M D. Plant zonation in low-latitude salt marshes:Disentangling the roles of flooding, salinity and competition[J]. Journal of Ecology, 2005, 93(1): 159-167. |
[63] |
肖强, 郑海雷, 陈瑶, 等. 盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J]. 生态学杂志, 2005, 24(4): 373-376. XIAO Qiang, ZHENG Hai-lei, CHEN Yao, et al. Effects of salinity on the growth and proline, soluble sugar and protein contents of Spartina alterniflora[J]. Chinese Journal of Ecology, 2005, 24(4): 373-376. DOI:10.3321/j.issn:1000-4890.2005.04.005 |
[64] |
苗萍, 谢文霞, 于德爽, 等. 胶州湾互花米草湿地氮、磷元素的垂直分布及季节变化[J]. 应用生态学报, 2017, 28(5): 1533-1540. MIAO Ping, XIE Wen-xia, YU De-shuang, et al. Vertical distribution and seasonal variation of nitrogen, phosphorus elements in Spartina alterniflora wetland of Jiaozhou Bay, Shandong, China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1533-1540. |
[65] |
Carrion S A. Determining factors that influence smooth cordgrass (Spartina alterniflora Loisel)transplant success in community-based living shoreline projects[D]. Drlando: University of Central Florida, 2016.
|
[66] |
Li S H, Ge Z M, Xie L N, et al. Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity:Implications for the effects of sea-level rise[J]. Scientific Reports, 2018, 8(1): 1-13. DOI:10.1038/s41598-017-17765-5 |
[67] |
Tang L, Gao Y, Li B, et al. Spartina alterniflora with high tolerance to salt stress changes vegetation pattern by outcompeting native species[J]. Ecosphere, 2014, 5(9): 1-18. |
[68] |
Verrill S A L. Pore water salinity drives brackish vegetation change in salt marsh tidal restoration[D]. Potland: University of Southern Maine, 2017.
|
[69] |
He Y, Li X, Craft C, et al. Relationships between vegetation zonation and environmental factors in newly formed tidal marshes of the Yangtze River estuary[J]. Wetlands Ecology and Management, 2011, 19: 341-349. DOI:10.1007/s11273-011-9220-8 |
[70] |
Moffett K B, Robinson D A, Gorelick S M. Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity, and topography[J]. Ecosystems, 2010, 13(8): 1287-1302. DOI:10.1007/s10021-010-9385-7 |
[71] |
White S N. Spartina species zonation along an estuarine gradient in Georgia: Exploring mechanisms controlling distribution[D]. Athens: Duke University, 1997.
|
[72] |
Janousek C N, Folger C L, Halvorsen R. Variation in tidal wetland plant diversity and composition within and among coastal estuaries:Assessing the relative importance of environmental gradients[J]. Journal of Vegetation Science, 2014, 25(2): 534-545. DOI:10.1111/jvs.12107 |
[73] |
赵欣胜, 崔保山, 孙涛, 等. 黄河三角洲潮沟湿地植被空间分布对土壤环境的响应[J]. 生态环境学报, 2010, 19(8): 1855-1861. ZHAO Xin-sheng, CUI Bao-shan, SUN Tao, et al. The relationship between the spatial distribution of vegetation and soil environmental factors in the tidal creek areas of the Yellow River Delta[J]. Ecology and Environmental Sciences, 2010, 19(8): 1855-1861. DOI:10.3969/j.issn.1674-5906.2010.08.015 |
[74] |
仲崇庆. 湿地植被与土壤环境因子关系研究进展[J]. 安徽农学通报, 2009, 15(13): 170-172. ZHONG Chong-qing. Research progress on the relationship of wet and vegetation and variation of soil environmental factors[J]. Anhui Agricultural Science Bulletin, 2009, 15(13): 170-172. DOI:10.3969/j.issn.1007-7731.2009.13.096 |
[75] |
Snedden G A, Steyer G D. Predictive occurrence models for coastal wetland plant communities:Delineating hydrologic response surfaces with multinomial logistic regression[J]. Estuarine, Coastal and Shelf Science, 2013, 118: 11-23. DOI:10.1016/j.ecss.2012.12.002 |
[76] |
张忍顺, 沈永明, 陆丽云, 等. 江苏沿海互花米草(Spartina alterniflora)盐沼的形成过程[J]. 海洋与湖沼, 2005, 36(4): 358-366. ZHANG Ren-shun, SHEN Yong-ming, LU Li-yun, et al. Formation of Spartina alterniflora salt marsh on Jiangsu coast, China[J]. Oceanologia et Limnologia Sinica, 2005, 36(4): 358-366. DOI:10.3321/j.issn:0029-814X.2005.04.011 |
[77] |
周在明, 杨燕明, 陈本清. 滩涂湿地入侵种互花米草植被覆盖度的高空间分辨率遥感估算[J]. 生态学报, 2017, 37(2): 505-512. ZHOU Zai-ming, YANG Yan-ming, CHEN Ben-qing. Estimating the Spartina alterniflora fractional vegetation cover using high spatial resolution remote sensing in a coastal wetland[J]. Acta Ecologica Sinica, 2017, 37(2): 505-512. |
[78] |
张华兵, 刘红玉, 侯明行. 人工管理和自然驱动下盐城海滨湿地互花米草沼泽演变及空间差异[J]. 生态学报, 2013, 33(15): 4767-4775. ZHANG Hua-bing, LIU Hong-yu, HOU Ming-hang. Spatiotemporal characteristics of Spartina alterniflora marsh change in the coastal wetlands of Yancheng caused by natural processes and human activities[J]. Acta Ecologica Sinica, 2013, 33(15): 4767-4775. |
[79] |
李屹, 陈一宁, 李炎. 红树林与互花米草盐沼交界区空间格局变化规律的遥感分析[J]. 海洋通报, 2017, 36(3): 348-360. LI Yi, CHEN Yi-ning, LI Yan. Remote sensing analysis of the changes in the ecotone of mangrove forests and Spartina alterniflora saltmarshes[J]. Marine Science Bulletin, 2017, 36(3): 348-360. |
[80] |
姚红岩, 刘浦东, 施润和, 等. 基于高分辨率遥感影像的湿地互花米草-芦苇混合交错带提取方法[J]. 地球信息科学学报, 2017, 19(10): 1375-1381. YAO Hong-yan, LIU Pu-dong, SHI Run-he, et al. Extracting the transitional zone of Spartina alterniflora and Phragmites australis in the wetland using high-resolution remotely sensed images[J]. Journal of Geo-information Science, 2017, 19(10): 1375-1381. |
[81] |
周在明, 杨燕明, 陈本清. 基于SPOT6遥感影像的滩涂湿地入侵种互花米草植株高度的反演研究[J]. 海洋学报, 2016(6): 1-7. ZHOU Zai-ming, YANG Yan-ming, CHEN Ben-qing. Assessing plant height of Spartina alterniflora in the coastal wetland using SPOT 6 satellite date[J]. Acta Oceanologica Sinica, 2016(6): 1-7. DOI:10.3969/j.issn.0253-4193.2016.06.001 |
[82] |
周在明, 杨燕明, 陈本清. 基于可见光波段无人机影像的入侵物种互花米草提取研究[J]. 亚热带资源与环境学报, 2017, 12(2): 90-95. ZHOU Zai-ming, YANG Yan-ming, CHEN Ben-qing. Study on the extraction of exotic species Spartina alterniflora from UAV visible images[J]. Journal of Subtropical Resources and Environment, 2017, 12(2): 90-95. DOI:10.3969/j.issn.1673-7105.2017.02.013 |
[83] |
Collin A, Long B, Archambault P. Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR[J]. Remote Sensing of Environment, 2010, 114(3): 520-530. DOI:10.1016/j.rse.2009.10.011 |
[84] |
Wang J, Liu Z J, Yu H Y, et al. Mapping Spartina alterniflora biomass using LiDAR and hyperspectral data[J]. Remote Sensing, 2017, 9(6): 589. DOI:10.3390/rs9060589 |
[85] |
Hebb A J, Mortsch L D, Deadman P J, et al. Modeling wetland vegetation community response to water-level change at Long Point, Ontario[J]. Journal of Great Lakes Research, 2013, 39(2): 191-200. DOI:10.1016/j.jglr.2013.02.001 |
[86] |
Milzow C, Burg V, Kinzelbach W. Estimating future ecoregion distributions within the Okavango Delta wetlands based on hydrological simulations and future climate and development scenarios[J]. Journal of Hydrology, 2010, 381(1/2): 89-100. |
[87] |
王聪.海滨湿地互花米草沼泽景观演变机制研究[D].南京: 南京师范大学, 2014. WANG Cong. Study on marsh landscape evolution mechanism in coastal wetlands[D]. Nanjing: Nanjing Normal University, 2014. http://d.wanfangdata.com.cn/Thesis_Y2625026.aspx |
[88] |
Huang H M, Zhang L Q, Guan Y J, et al. A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha shoals, Shanghai, China[J]. Estuarine, Coastal and Shelf Science, 2008, 77(1): 47-55. DOI:10.1016/j.ecss.2007.09.003 |
[89] |
Zheng Z S, Tian B, Zhang L W, et al. Simulating the range expansion of Spartina alterniflora in ecological engineering through constrained cellular automata model and GIS[J]. Mathematical Problems in Engineering, 2015, 875817. |
[90] |
Silvestri S, Marani M. Salt-marsh vegetation and morphology: Basic physiology, modelling and remote sensing observations Fagherazzi S, Marani M, et al. The ecogeomorphology of tidal marshes[M]//Fagherazzi S, Marani M, Blum L K. The ecogeomorphology of tidal marshes. American Geophysical Union, 2004.
|
[91] |
Fagherazzi S, Kirwan M L, Mudd S M, et al. Numerical models of salt marsh evolution:Ecological, geomorphic, and climatic factors[J]. Review of Geophysics, 2012, 50(1): G1002. |