快速检索        
  农业资源与环境学报  2020, Vol. 37 Issue (2): 233-240  DOI: 10.13254/j.jare.2019.0025
0

引用本文  

纪艺凝, 徐应明, 王农, 等. 贝壳粉对农田土壤镉污染钝化修复效应[J]. 农业资源与环境学报, 2020, 37(2): 233-240.
JI Yi-ning, XU Ying-ming, WANG Nong, et al. Effect of shell powder on immobilization remediation of cadmium contaminated farmland soil[J]. Journal of Agricultural Resources and Environment, 2020, 37(2): 233-240.

基金项目

国家重点研发计划项目(2018YFD0800300,2017YFD0801402);国家自然科学基金项目(31971525);天津市自然科学基金重点项目(17JCZDJC34200)

Project supported

The National Key Research and Development Program of China(2018YFD0800300, 2017YFD0801402); The National Natural Science Foundation of China (31971525); The Key Program of Natural Science Foundation of Tianjin (17JCZDJC34200)

通信作者

孙约兵  E-mail:sunyuebing@aepi.org.cn

作者简介

纪艺凝(1995-), 女, 黑龙江大庆人, 硕士研究生, 研究方向为土壤污染修复。E-mail:JiYiNing95@163.com

文章历史

收稿日期: 2019-01-13
录用日期: 2019-07-09
贝壳粉对农田土壤镉污染钝化修复效应
纪艺凝1,2 , 徐应明1 , 王农1 , 孙约兵1     
1. 农业农村部环境保护科研监测所, 农业农村部产地环境污染防控重点实验室, 天津市农业环境与农产品安全重点实验室, 天津 300191;
2. 东北农业大学资源与环境学院, 哈尔滨 150030
摘要: 通过静态培养试验和盆栽试验,研究了贝壳粉对Cd污染农田土壤的修复效应及其对土壤质量的影响。结果表明:静态培养试验中,随贝壳粉施加量的增加,土壤pH上升,而土壤有机质、速效氮、速效磷和速效钾含量则降低。贝壳粉对土壤中TCLP-Cd的钝化率最高达64.13%,各处理较对照差异显著(P < 0.05)。施加贝壳粉后土壤过氧化氢酶、过氧化物酶、脲酶活性增幅最高分别达到64.31%、30.26%、17.08%。盆栽试验中,施用贝壳粉可以使土壤中重金属Cd由水溶态和还原态向氧化态和残渣态转化。贝壳粉处理使油菜叶片叶绿素含量提高,但对植物鲜质量没有显著影响(P>0.05),油菜地上部Cd含量较对照下降了3.13%~26.71%,地下部Cd含量较对照下降了12.22%~31.49%。当贝壳粉投加量达到1%时,油菜可食部分Cd含量符合国家食品中污染物限量标准(GB 2762-2017)。施用贝壳粉钝化修复Cd污染土壤切实可行,可进一步开展大田试验验证效果。
关键词:     贝壳粉    钝化修复    油菜    生态效应    
Effect of shell powder on immobilization remediation of cadmium contaminated farmland soil
JI Yi-ning1,2 , XU Ying-ming1 , WANG Nong1 , SUN Yue-bing1     
1. Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
2. College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
Abstract: The effects of shell powder on the remediation effect and soil quality of Cd contaminated farmland soil were studied using a static culture test and pot experiment. In the static culture experiment, with the increase of the shell powder applied, the soil pH increased, while the contents of soil organic matter, available nitrogen, available phosphorus and available potassium were decreased. The immobilization rate of TCLP-Cd in soil was up to 64.13%, and each treatment was significantly higher than the control(P < 0.05). The maximal increase of the activities of catalase, peroxidase, and urease in soil were up to 64.31%, 30.26% and 17.08%, respectively. In the pot experiment, the application of the shell powder could convert the heavy metal Cd in the soil from the water-soluble state and the reduced state to the oxidation state and the residual state. Shell powder treatment increased the chlorophyll content of rape leaves and had no significant effect on the fresh weight(P>0.05) of plants. The Cd content in the upper part of the rape decreased by 3.13%~26.71% compared with the control. The Cd content in the roots decreased by 12.22%~31.49% compared with the control. When the shell powder dosage reached 1%, Cd content in edible part of rape met with the national food contaminant limit standard(GB 2762-2017). It is more feasible to immobilize remediation of Cd contaminated soil using shell powder, and the further field experiment should be carried out to verify the effect.
Keywords: cadmium    shell powder    immobilization and remediation    rape    ecological effect    

近年来,我国农田土壤Cd污染日益严重,《全国土壤污染状况调查公报》显示全国土壤Cd污染点位超标率高达7%[1]。天津市因长期用污水灌溉农田,导致农田Cd含量超标率达到43.48%,蔬菜中Cd的超标率高达45%[2-3]。蔬菜较易吸收土壤中的重金属Cd,同时蔬菜又是人体膳食纤维的主要来源之一[4-5]。因此,修复治理Cd污染土壤对于促进农业可持续发展、保障农产品产量及品质安全和维护人体健康具有重要意义。修复农田土壤重金属污染的主要方法有物理法、化学法、生物法、改变农耕措施等。其中,原位钝化技术是当今土壤重金属污染修复的热点,通过向土壤中施加有机、无机等功能材料,不但可以改变土壤的理化性质,还可以改变重金属在土壤中赋存的形态,抑制其向农作物的迁移[6-8]

我国贝类产量居于世界第一,每年会产生超过1000万t的废弃贝壳,贝壳的随意丢弃给周围环境和居民健康造成了严重的威胁,也成为沿海地区亟需解决的环境问题[9-10]。贝壳是一种宝贵的可再生矿产资源,化学成分中CaCO3含量约占95%,其余5%为有机质,是一种天然的生物矿物材料[9, 11]。近年来,国外使用贝壳粉进行土壤重金属稳定化修复,并取得了一定的成果[12-13]。研究表明,在土壤中施用牡蛎壳粉对重金属Cd、Pb的活性有一定的抑制作用,且可以增加植物的生物量[14-15]。将牡蛎壳粉施加进酸性土壤后,可以提高土壤pH和可交换阳离子的量,还可以增加土壤中有机磷的含量,改善土壤的性质,进而提高农作物的产量[16-17]。但是贝壳粉作为钝化剂施入土壤后对土壤质量及油菜质量的影响相关研究较少。

本研究采用室内静态培养试验和盆栽试验相结合的方法,研究贝壳粉对重金属Cd污染土壤的修复效应及其对土壤肥力和植物生理生化性质的影响,以期为贝壳粉用于大面积修复Cd污染农田土壤提供理论依据和技术支持。

1 材料与方法 1.1 试验材料

土壤样品采自天津市东丽污灌区Cd污染农田,土壤pH值、有机质、CEC(阳离子交换量)和Cd含量分别为8.10、26 g · kg-1、24.92 cmol · kg-1和2.47 mg · kg-1。贝壳采购于天津市某公司,采用万能粉碎机粉碎后过100目筛备用,贝壳粉pH值、有机质和CEC分别为9.02、4.09 g·kg-1、14.26 cmol·kg-1,Cd含量未检出。表 1所示为贝壳粉无机成分。供试油菜种子购于南京秋田种业研究所。

表 1 贝壳粉无机成分 Table 1 The inorganic components of shell powder
1.2 试验方法

静态培养试验:取2.0 kg上述供试土壤,放入塑料盆(10 cm×20 cm),投加不同剂量贝壳粉(0.5%、1%、3%和5%),搅拌混匀,不施加材料为对照组(CK),每组处理重复3次。调节土壤水分至最大持水量的60%,密封后静态放置365 d后,分别测定土壤有机质、速效氮、速效磷、速效钾、有效态Cd含量,以及过氧化氢酶、过氧化物酶、脲酶活性。

盆栽试验:取2.0 kg上述供试土壤,放入花盆(20 cm×12 cm),投加不同剂量贝壳粉(0.5%、1%、3%和5%),搅拌混匀,不施加材料为对照组,每组处理重复3次。调节土壤水分至最大持水量的60%,稳定1个月后,撒入油菜种子,种子发芽后间苗至每盆5株,70 d后收获油菜样品,测定Cd含量,采集盆中土壤进行土壤理化性质和Cd形态的测定。

1.3 样品分析

土壤有机质采用重铬酸钾容量法(NY/T 1121.6— 2006)测定;土壤pH采用(土水比1:2.5) pH计进行测定;土壤有效态Cd含量采用Toxicity characteristic leaching procedure (TCLP)法进行测定,以TCLP-Cd表示;速效氮采用0.01 mol·L-1 CaCl2浸提,连续流动分析仪法测定;速效磷采用0.5 mol·L-1 NaHCO3浸提,紫外分光光度计法测定;速效钾采用1 mol·L-1 NH4OAC浸提,火焰光度法测定。

土壤过氧化氢酶活性采用分光光度法测定,以每日每克土样催化1 μmol H2O2降解定义为一个酶活力单位,单位为μmol·g-1·d-1。过氧化物酶采用分光光度法测定,以每日每克土样中产生1 mg紫色没食子素定义为一个活力单位,单位为mg·g-1·d-1。脲酶活性采用分光光度法测定,以每日每克土样中产生1 μg NH3-N定义为一个活力单位,单位为μg·g-1·d-1

土壤和油菜样品Cd含量采用HNO3-HClO4消煮法测定。土壤重金属形态采用改进的BCR法测定[18]。土壤消解液、浸出液及油菜样品消解液中Cd含量采用电感耦合等离子体质谱仪(ICP-MS)测定,Cd元素回收率为95%~105%。用SPAD-502测定油菜叶片叶绿素含量[19]

1.4 统计分析

采用Excel 2016、Origin 2018、SPSS 20.0、DPS进行数据处理、相关性分析、方差分析和图表制作,采用Duncan法进行差异显著性检验。

2 结果与讨论 2.1 贝壳粉处理对土壤基本理化特征及酶活性影响 2.1.1 施加贝壳粉对土壤基本理化特征影响

表 2为贝壳粉施入对土壤pH及速效养分的影响。pH在土壤重金属钝化修复过程中具有至关重要的作用[20-22]。试验所采用的贝壳粉为碱性钝化剂,具有较高的pH值。随着贝壳粉施加量的增加,土壤pH较对照相比增加了0.01~0.22个单位,3%和5%处理土壤pH值与对照具有显著差异(P < 0.05)。研究发现,土壤的pH每增加1个单位,土壤中Cd有效态含量最低可降至原来的一半[23]。pH值升高,可以增强土壤胶体和黏粒对重金属离子的吸附,使其生成重金属的沉淀,从而抑制了土壤中重金属元素向植物体内迁移,降低了其可迁移性[24]。张琢等[10]研究发现,贝壳粉比CaCO3对土壤pH影响更大,因其还含有K、Na、Mg等碱性化合物。

表 2 贝壳粉处理对土壤pH及养分含量的影响 Table 2 Soil pH and nutrient content in different shell powder treatments

在静态培养试验中,施加贝壳粉后,土壤中速效养分的含量下降。有机质含量较对照下降了4.58%~ 25.61%。土壤速效氮、速效磷和速效钾含量分别较对照下降了1.60%~14.69%、0.92%~10.39%、11.02%~ 26.91%。有机质作为可吸附态Cd的吸附位点,可以降低Cd的生物有效性[25]。大量研究发现,在施加某些钝化剂后,也会加强土壤对速效氮、速效磷和速效钾的吸附,土壤速效磷、铵态氮与pH呈显著负相关(P < 0.05) [26-27]。本研究所使用的钝化剂为贝壳粉,是一种片状微层结构的吸附材料,具有较强的吸附作用,在施入土壤后使pH值上升,有机质、速效氮、速效磷、速效钾含量下降。这在一定程度上可以控制土壤养分的释放与挥发流失,使土壤的保肥能力提高[28]

2.1.2 施加贝壳粉对土壤酶活性的影响

土壤酶活性是评价土壤质量的一个重要指标,其活性可以反映土壤微生物活性、土壤养分迁移转化能力[29]。土壤过氧化氢酶是一种氧化还原酶,它反映了土壤的呼吸强度、土壤中有机质的转化速度、微生物数量等[30]。过氧化氢酶能通过将H2O2分解为O2和H2O来使细胞免受H2O2的毒害,因此,土壤过氧化氢酶也可反映土壤生物毒性变化[31]。过氧化物酶可将土壤微生物活动和某些氧化酶作用形成过氧化氢和其他有机过氧化物中的氧作为电子受体,用来氧化土壤有机物质[32]。脲酶反映了土壤的供氮能力,参与土壤氮转化[33-34]。重金属可以与酶、底物络合物结合,与蛋白活性基因发生反应或使蛋白质变性,从而使酶活性降低[35]。结果表明,土壤受到重金属Cd、Pb污染后,脲酶、磷酸酶、脱氢酶活性明显下降,土壤的环境质量及土壤肥力也会受到影响[36-37]图 1所示为施加贝壳粉对土壤酶活性的影响。土壤的酶活性在施加贝壳粉后不同程度提高。土壤中过氧化氢酶、过氧化物酶、脲酶活性最多分别增加64.31%、30.26%、17.08%,除0.5%、1%贝壳粉处理脲酶外,其他各处理酶活性均与CK处理差异显著(P < 0.05)。这是由于施加贝壳粉后,土壤中Ca元素增加,与土壤中Cd2+发生竞争,使土壤有效态Cd含量减少,对土壤酶活性的下降起到了一定的缓解作用,土壤的质量得到了一定的改善。

不同字母表示处理间差异显著(P < 0.05)。下同 Different letters indicate the significant differences among treatments (P < 0.05). The same below 图 1 贝壳粉处理对土壤酶活性的影响 Figure 1 Effect of shell powder treatments on soil enzyme activities
2.2 施加贝壳粉对土壤Cd含量和形态的影响 2.2.1 施加贝壳粉对土壤TCLP-Cd含量的影响

静态培养试验中土壤TCLP-Cd含量如图 2所示。重金属污染评价TCLP法是现在应用最广泛的生态风险评价方法[38-39]。土壤有效态Cd含量随钝化剂的增加而下降,最高钝化率达64.13%,各处理较对照差异显著(P < 0.05)。受污染土壤处于碱性条件时,会促使土壤Cd(OH) 2的生成和CdCO3沉淀,使土壤中有效态Cd含量下降,从而使土壤重金属活性下降[40]。骨粉中含有大量的Ca,施入土壤后,土壤中Ca元素与Cd络合形成螯合物,可以促使Cd由活泼形态向惰性形态转化,降低其生物有效性,从而达到修复土壤重金属污染的目的[41]。研究发现,土壤pH趋于酸性,会使土壤中Cd从稳定状态转化为活泼形态,从而使Cd的迁移性增强,进而增强Cd的生物毒性[42]

图 2 贝壳粉处理对土壤TCLP-Cd含量的影响 Figure 2 Effect of shell powder treatments on soil TCLP-Cd content
2.2.2 施加贝壳粉对土壤Cd形态的影响

盆栽实验中,土壤中重金属的化学形态是影响重金属在土壤中迁移性和生物可利用性的重要因素,不同形态的Cd会对土壤环境产生不同的影响[43]。当贝壳粉施入土壤后,土壤的pH升高,使土壤表面负电荷增加,对Cd离子的吸附性增强[44]图 3为不同贝壳粉处理下土壤中Cd形态的变化。随着贝壳粉施加量的增加,水溶态Cd和还原态Cd占比逐渐减小,而氧化态Cd和残渣态Cd占比逐渐增大。可见施用贝壳粉可以使土壤中重金属Cd由水溶态和还原态向氧化态和残渣态转化。残渣态并非有效态,研究发现这种形态的重金属存在于原生硅酸盐矿物和次生硅酸盐矿物等稳定的次生矿物中,其活性较低,很难被植物吸收,在一定程度上避免了重金属向人体的转移[45]。土壤处于碱性条件下,有利于CdOH+的形成,改变了重金属Cd的化学形态和赋存形态,降低了重金属的活性,使其从可溶态向更加稳定的残渣态转变,达到修复污染土壤的目的[46]

图 3 贝壳粉处理土壤中Cd形态分布 Figure 3 Distribution of Cd forms in soil treated by shell powder
2.3 施加贝壳粉对油菜Cd含量和叶绿素含量的影响 2.3.1 施加贝壳粉对油菜Cd含量的影响

土壤Cd污染对油菜可食部分Cd含量影响很大,这种情况同样表现在其他农作物,如玉米、水稻、油麦菜、番茄等[47-48]图 4为不同贝壳粉处理下油菜地上部和地下部Cd含量。从图 4可以看出油菜地上部(可食部) Cd含量在1%、3%、5%贝壳粉处理下,符合国家食品中污染物限量标准(GB 2762—2017)叶菜类可食部Cd最大容许含量0.2 mg·kg-1(FW),且与对照具有显著差异(P < 0.05)。油菜地上部Cd含量较对照下降了3.13%~26.71%。地下部Cd含量较对照下降了12.22%~31.49%。研究表明,油菜地上部Cd含量高于地下部[49-51]。这与丁琼等[52]研究番茄地上部、地下部重金属含量结果一致。贝壳粉能够改变土壤的pH和Eh,使生物活性较高的形态向残渣态转化,减少了Cd向油菜中的迁移[53]。在盆栽试验后,土壤pH与对照相比最高上升了0.08个单位,对重金属Cd的钝化率从1.22%增加到24.36%(表 3)。贝壳粉主要成分为CaCO3,其降低油菜各部位Cd含量的原因,可能主要在于两方面:①将贝壳粉施加进土壤之后,土壤中Ca2+的浓度增加,与土壤中的Cd2+发生竞争,减少了Cd2+在植物中的富集[54];②贝壳粉中CaCO3会促使CdCO3的形成,减少其向植株中的迁移[55]

图 4 贝壳粉处理油菜地上和地下部Cd含量 Figure 4 Cd content in aboveground and underground of rape in shell powder treatments
表 3 贝壳粉处理对土壤pH、Cd钝化率和富集系数的影响 Table 3 Effect of shell powder treatment on soil pH and reduction rate and enrichment factor of Cd in rape
2.3.2 施加贝壳粉后土壤中Cd钝化率及油菜对Cd的富集系数

植物中Cd的富集系数是植物地上部或地下部Cd含量与土壤中Cd含量的比值,在一定程度上反映了植物各部分对Cd的积累能力[56]。本研究中钝化率表示贝壳粉处理下土壤有效态Cd含量相对于对照处理降低的百分率。由表 3可知,随着贝壳粉施加量的增大,Cd的钝化率在静态培养条件和盆栽条件下均呈逐渐增大的趋势。由表 3也可以看出,油菜地上部和地下部对Cd的富集能力,随着贝壳粉施加量的增加而降低,地上部的富集系数从0.09降至0.06,地下部的富集系数从0.06降至0.04。

2.3.3 施加贝壳粉对油菜叶绿素含量和生物量的影响

土壤中Cd被植物过量吸收后,会导致叶片发黄、叶绿体降解、气孔关闭、光合作用受到抑制、水分代谢失调、生长受阻,严重时甚至造成细胞不可逆损伤,导致植株坏死[57]。叶绿素是植物进行光合作用的物质基础,其含量的高低影响物质的合成以及光合作用的强弱[58]。从图 5可以看出,贝壳粉的施加使叶绿素含量上升,较对照高出9.38%~12.73%,其中当贝壳粉施加量为0.5%时,叶绿素含量最高,与对照相比差异显著(P < 0.05)。贝壳粉处理下油菜生物量与对照相比无显著差异。江海东等[59]研究发现,油菜中的叶绿素a、叶绿素b、叶绿素总量与土壤中Cd呈显著负相关(P < 0.05),随着Cd浓度的增加,三种叶绿素含量显著降低。有研究显示,当重金属进入植物体内后,会与叶绿素中几种含有-SH酶的肽链形成络合物,抑制酶的活性,阻碍叶绿素的合成[60]

图 5 贝壳粉处理对油菜叶绿素含量和鲜质量的影响 Figure 5 Effect of shell powder treatments on chlorophyll content and fresh weight of rape
3 结论

(1) 静态培养试验中,随贝壳粉施加量的增加,土壤pH上升,土壤有机质和速效氮、速效磷、速效钾含量受到一定的影响而下降。施加贝壳粉后土壤中TCLP-Cd的钝化率最高达64.13%,且对土壤过氧化氢酶、过氧化物酶、脲酶活性具有显著促进作用。

(2) 盆栽试验中,施用贝壳粉可以使土壤中重金属Cd由水溶态和还原态向氧化态和残渣态转化,使油菜叶片叶绿素含量提高,但对植物鲜质量没有显著影响。施加贝壳粉后油菜地上部和地下部Cd含量较对照下降,施加量达到1%时,可食部分重金属Cd含量符合国家食品中污染物限量标准(GB 2762—2017)。

(3) 通过静态培养试验和盆栽试验可以看出,施用贝壳粉钝化修复Cd污染土壤具有一定的可行性,还需进一步开展大田试验验证效果。

参考文献
[1]
陈能场, 郑煜基, 何晓峰, 等. 全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692.
CHEN Neng-chang, ZHENG Yu-ji, HE Xiao-feng, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692.
[2]
樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736.
FAN Ting, YE Wen-ling, CHEN Hai-yan, et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 2013, 22(10): 1727-1736. DOI:10.3969/j.issn.1674-5906.2013.10.015
[3]
师荣光, 赵玉杰, 高怀友, 等. 天津市郊蔬菜重金属污染评价与特征分析[J]. 农业环境科学学报, 2005, 24(z1): 169-173.
SHI Rong-guang, ZHAO Yu-jie, GAO Huai-you, et al. Metal influencing the level of heavy metal contamination of vegetables in Tianjin City as derived by principal components analysis[J]. Journal of Agro-Environment Science, 2005, 24(z1): 169-173. DOI:10.3321/j.issn:1672-2043.2005.z1.040
[4]
Peralta Videa J R, Lopez M L, Narayan M, et al. The biochemistry of environmental heavy metal uptake by plants:Implications for the food chain[J]. International Journal of Biochemistry Cell Biology, 2009, 41(8): 1665-1677.
[5]
Li P, Lin C, Cheng H, et al. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China[J]. Ecotoxicology and Environmental Safety, 2015, 113: 391-399. DOI:10.1016/j.ecoenv.2014.12.025
[6]
倪中应, 谢国雄, 章明奎. 镉污染农田土壤修复技术研究进展[J]. 安徽农学通报, 2017, 23(6): 115-120.
NI Zhong-ying, XIE Guo-xiong, ZHANG Ming-kui. Research progress on remediation technology of cadmium-contaminated agricultural soils[J]. Anhui Agricultural Science Bulletin, 2017, 23(6): 115-120.
[7]
Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments:A review[J]. Waste Management, 2008, 28(1): 215-225. DOI:10.1016/j.wasman.2006.12.012
[8]
Sun Y B, Sun G H, Xu Y M, et al. Assessment of sepiolite for immobilization of cadmium-contaminated soils[J]. Geoderma, 2013, 193/194(2): 149-155.
[9]
代银平, 王雪莹, 叶炜宗, 等. 贝壳废弃物的资源化利用研究[J]. 资源开发与市场, 2017, 33(2): 203-208.
DAI Yin-ping, WANG Xue-ying, YE Wei-zong, et al. Study on resource utilization of mollusk shell waste[J]. Resource Development & Market, 2017, 33(2): 203-208. DOI:10.3969/j.issn.1005-8141.2017.02.016
[10]
张琢, 王梅, 任杰, 等. 贝壳粉对污染土壤中Pb、Zn、Cd的稳定化作用[J]. 环境污染与防治, 2016, 38(1): 14-18.
ZHANG Zhuo, WANG Mei, REN Jie, et al. Effects of sea shell powder on the stabilization of Pb, Zn and Cd in contaminated soil[J]. Environmental Pollution and Prevention, 2016, 38(1): 14-18.
[11]
陈涛.贝壳粉体的改性及其在抗菌和聚丙烯中的应用[D].杭州: 浙江大学, 2014.
CHEN Tao. Modification of shell powder and its application in antibacterial and polypropylene[D]. Hangzhou: Zhejiang University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10335-1014366707.htm
[12]
Ok Y S, Oh S E, Ahmad M, et al. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils[J]. Environmental Earth Sciences, 2010, 61(6): 1301-1308. DOI:10.1007/s12665-010-0674-4
[13]
Yong S O, Lim J E, Moon D H. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells[J]. Environmental Geochemistry & Health, 2011, 33(1): 83-91.
[14]
张曦, 王旭. 四种土壤调理剂对镉、铅的吸附效果研究[J]. 中国土壤与肥料, 2012(4): 6-10.
ZHANG Xi, WANG Xu. Adsorption of aqueous cadmium and lead on four different soil amendments[J]. Chinese Soil and Fertilizer, 2012(4): 6-10. DOI:10.3969/j.issn.1673-6257.2012.04.002
[15]
Pinto P X, Al-Abed S R, Reisman D J. Biosorption of heavy metals from mining influenced water onto chitin products[J]. Chemical Engineering Journal, 2011, 166(3): 1002-1009. DOI:10.1016/j.cej.2010.11.091
[16]
Lee C H, Lee D K, Ali M A, et al. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials[J]. Waste Management, 2008, 28(12): 2702-2708. DOI:10.1016/j.wasman.2007.12.005
[17]
罗华汉, 柳开, 余跑兰, 等. 牡蛎壳粉对水稻产量和土壤重金属钝化的影响[J]. 中国稻米, 2016(3): 30-33.
LUO Hua -han, LIU Kai, YU Pao-lan, et al. Effects of oyster shell powder on rice yield and heavy metal stabilization in paddy soil[J]. China Rice, 2016(3): 30-33. DOI:10.3969/j.issn.1006-8082.2016.03.009
[18]
张朝阳, 彭平安, 宋建中, 等. 改进BCR法分析国家土壤标准物质中重金属化学形态[J]. 生态环境学报, 2012, 21(11): 1881-1884.
ZHANG Chao-yang, PENG Ping-an, SONG Jian-zhong, et al. Utilization of modified BCR procedure for the chemical speciation of heavy metals in Chinese soil reference material[J]. Ecology and Environmental Sciences, 2012, 21(11): 1881-1884. DOI:10.3969/j.issn.1674-5906.2012.11.019
[19]
塔娜, 王灏, 关周博, 等. 甘蓝型油菜DH系在不同生态区SPAD值的差异分析[J]. 中国农学通报, 2015, 31(24): 116-121.
TA Na, WANG Hao, GUAN Zhou -bo, et al. Differential analysis of SPAD value with doubled haploid lines in Brassica napus L.in different ecological environments[J]. Chinese Agricultural Science Bulletin, 2015, 31(24): 116-121. DOI:10.11924/j.issn.1000-6850.casb15030105
[20]
孙约兵, 徐应明, 史新, 等. 污灌区镉污染土壤钝化修复及其生态效应研究[J]. 中国环境科学, 2012, 32(8): 1467-1473.
SUN Yue -bing, XU Ying-ming, SHI Xin, et al. The immobilization remediation of Cd contaminated soils in wastewater irrigation region and its ecological effects[J]. China Environmental Science, 2012, 32(8): 1467-1473. DOI:10.3969/j.issn.1000-6923.2012.08.019
[21]
Sun Y B, Sun G H, Xu Y M, et al. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil[J]. Environmental Science & Pollution Research, 2013, 20(5): 3290-3299.
[22]
Markiewicz-Patkowska J, Hursthouse A, Przybyla-Kij H. The interaction of heavy metals with urban soils:Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brown field deposit[J]. Environment International, 2005, 31(4): 513-521. DOI:10.1016/j.envint.2004.09.004
[23]
Madejón E, Mora A D, Felipe E. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation[J]. Environmental Pollution, 2006, 139(1): 40-52.
[24]
王长伟, 徐应明, 王林, 等. 海泡石与磷酸盐对镉铅复合污染土壤的钝化修复效应[J]. 安全与环境学报, 2010, 10(4): 42-45.
WANG Chang-wei, XU Ying-ming, WANG Lin, et al. Amendment effects of cadmium and lead to the co-contaminated soils through sepiolite and phosphate[J]. Journal of Safety and Environment, 2010, 10(4): 42-45. DOI:10.3969/j.issn.1009-6094.2010.04.011
[25]
陈建清, 郭栋, 陈德, 等. 生物质炭、有机肥和钙镁磷肥对三七(Panax notoginseng) Cd含量的影响[J]. 农业环境科学学报, 2016, 35(10): 1909-1916.
CHEN Jian-qing, GUO Dong, CHEN De, et al. Influences of biochar, calcium magnesium phosphate and manure on Cd accumulation in Panax notoginseng[J]. Journal of Agro-Environment Science, 2016, 35(10): 1909-1916. DOI:10.11654/jaes.2016-0353
[26]
李婧, 陈森, 周艳文, 等. 凹凸棒石施用对镉污染土壤理化性质及小白菜生长的影响[J]. 安徽农业科学, 2017, 45(29): 101-103.
LI Jing, CHEN Sen, ZHOU Yan-wen, et al. Effects of attapulgite application on Cd contaminated soil's physical and chemical properties and Chinese cabbage's growth[J]. Journal of Anhui Agricultural Sciences, 2017, 45(29): 101-103. DOI:10.3969/j.issn.0517-6611.2017.29.032
[27]
Zhao J, Dong Y, Xie X B, et al. Effect of annual variation in soil pH on available soil nutrients in pear orchards[J]. Acta Ecologica Sinica, 2011, 31(4): 212-216. DOI:10.1016/j.chnaes.2011.04.001
[28]
韩君, 梁学峰, 徐应明, 等. 黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014, 34(11): 2853-2860.
HAN Jun, LIANG Xue-feng, XU Ying-ming, et al. In-situ remediation of Cd-polluted paddy soil by clay minerals and their effects on nitrogen phosphorus and enzymatic activities[J]. Acta Scientiae Circumstantia, 2014, 34(11): 2853-2860.
[29]
禹朴家, 范高华, 韩可欣, 等. 基于土壤微生物生物量碳和酶活性指标的土壤肥力质量评价初探[J]. 农业现代化研究, 2018, 39(1): 163-169.
YU Pu-jia, FAN Gao-hua, HAN Ke-xin, et al. Soil quality assessment based on soil microbial biomass carbon and soil enzyme activities[J]. Research of Agricultural Modernization, 2018, 39(1): 163-169.
[30]
Lee S H, Lee J S, Choi Y J, et al. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments[J]. Chemosphere, 2009, 77(8): 1069-1075. DOI:10.1016/j.chemosphere.2009.08.056
[31]
王涵, 王果, 黄颖颖, 等. pH变化对酸性土壤酶活性的影响[J]. 生态环境学报, 2008, 17(6): 2401-2406.
WANG Han, WANG Guo, HUANG Ying-ying, et al. The effects of pH change on the activities of enzymes in an acid soil[J]. Ecology and Environmental Sciences, 2008, 17(6): 2401-2406. DOI:10.3969/j.issn.1674-5906.2008.06.055
[32]
高璟赟.稻田土壤氧化酶活性与有机碳转化关系研究[D].武汉: 华中农业大学, 2010.
GAO Jing-yun. Oxidase activities and organic carbon transformation of paddy soils[D]. Wuhan: Huazhong Agricultural university, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10504-1010010379.htm
[33]
Tripathi S, Chakraborty A, Chakrabarti K, et al. Enzyme activities and microbial biomass in coastal soils of India[J]. Soil Biology & Biochemistry, 2007, 39(11): 2840-2848.
[34]
周媛, 李平, 齐学斌, 等. 不同施氮水平对再生水灌溉土壤释氮节律的影响[J]. 环境科学学报, 2016, 36(4): 1369-1374.
ZHOU Yuan, LI Ping, QI Xue-bin, et al. Influence of nitrogen rate on nitrogen release pattern in soil irrigated with reclaimed wastewater[J]. Acta Scientiae Circumstantiae, 2016, 36(4): 1369-1374.
[35]
Nannipieri P, Pankhurst C E, Doube B M, et al. The potential use of soil enzymes as indicators of productivity, sustainability and pollution[M]//Bernard D. Soil biota-management in sustainable farming systems, 1994.
[36]
Zeng L S, Liao M, Chen C L, et al. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice(Oryza sativa L.)system[J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 67-74. DOI:10.1016/j.ecoenv.2006.05.001
[37]
Begonia M T, Begonia G B, Miller G, et al. Phosphatase activity and populations of microorganisms from cadmium-and lead-contaminated soils[J]. Bulletin of Environmental Contamination & Toxicology, 2004, 73(6): 1025-1032.
[38]
陈齐, 邓潇, 陈珊, 等. 典型土壤不同提取态Cd与水稻吸收累积的关系[J]. 环境科学, 2017, 38(6): 2538-2545.
CHEN Qi, DENG Xiao, CHEN Shan, et al. Correlations between different extractable cadmium levels in typical soils and cadmium accumulation in rice[J]. Environmental Science, 2017, 38(6): 2538-2545.
[39]
Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. DOI:10.1021/ac50043a017
[40]
Yong S O, Lim J E, Moon D H. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells[J]. Environmental Geochemistry and Health, 2011, 33(1): 83-91. DOI:10.1007/s10653-010-9329-3
[41]
王婷.普钙生产中重金属的分布、对土壤影响及其减害化研究[D].贵阳: 贵州大学, 2017.
WANG Ting. Distribution of heavy metals in superphosphate production, effects on soil and reducing heavy metal hazards[D]. Guiyang: Guizhou University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10657-1017877218.htm
[42]
Wu C F, Luo Y M, Deng S P, et al. Spatial characteristics of cadmium in topsoils in a typical e-waste recycling area in southeast China and its potential threat to shallow groundwater[J]. Science of the Total Environment, 2014, 472: 556-561. DOI:10.1016/j.scitotenv.2013.11.084
[43]
Shoko I, Chisato T. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts[J]. Environment International, 2005, 31(4): 603-608. DOI:10.1016/j.envint.2004.10.017
[44]
高译丹, 梁成华, 裴中健, 等. 施用生物炭和石灰对土壤镉形态转化的影响[J]. 水土保持学报, 2014, 28(2): 258-261.
GAO Yi-dan, LIANG Cheng-hua, PEI Zhong-jian, et al. Effect of biochar and lime on the fraction transform of cadmium in contaminated soil[J]. Journal of Soil and Water Conservation, 2014, 28(2): 258-261.
[45]
Presley B J, Trefry J H, Shokes R F. Heavy metal inputs to Mississippi Delta sediments[J]. Water, Air, & Soil Pollution, 1980, 13(4): 481-494.
[46]
Naidu R, Bolan N S, Kookana R S, et al. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils[J]. European Journal of Soil Science, 2010, 45(4): 419-429.
[47]
范美蓉.赤泥对污染稻田重金属钝化行为及其肥效研究[D].长沙: 湖南农业大学, 2011.
FAN Mei -rong. Study of passivation behaviors of red mud on heavy metals in the contaminated paddy soil and its fertilizer efficiency[D]. Changsha: Hunan Agricultural Univeisity, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10537-1012298487.htm
[48]
刘彩凤, 史刚荣, 余如刚, 等. 硅缓解植物镉毒害的生理生态机制[J]. 生态学报, 2017, 37(23): 7799-7810.
LIU Cai-feng, SHI Gang-rong, YU Ru-gang, et al. Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants:A review[J]. Acta Ecologica Sinica, 2017, 37(23): 7799-7810.
[49]
费维新, 荣松柏, 初明光, 等. 油菜种植修复重金属镉等污染土壤研究进展[J]. 安徽农业科学, 2018, 46(35): 19-22.
FEI Wei-xin, RONG Song-bai, CHU Ming-guang, et al. Advances in phytoremediation of soil polluted by heavy metals such as cadmium by oilseed rape planting[J]. Journal of Anhui Agricultural Science, 2018, 46(35): 19-22. DOI:10.3969/j.issn.0517-6611.2018.35.007
[50]
Mckenna I M, Al E. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach[J]. Environmental Pollution, 1993, 79(2): 113. DOI:10.1016/0269-7491(93)90060-2
[51]
孔文杰, 倪吾钟. 有机无机肥配合施用对土壤-油菜系统重金属平衡的影响[J]. 水土保持学报, 2006(3): 32-35.
KONG Wen-jie, NI Wu-zhong. Effects of integrated fertilization with commercial organic mature and chemical fertilizers on heavy metal balance in soil-rape cropping system[J]. Journal of Soil and Water Conservation, 2006(3): 32-35. DOI:10.3321/j.issn:1009-2242.2006.03.009
[52]
丁琼, 杨俊兴, 华珞, 等. 不同钝化剂配施硫酸锌对石灰性土壤中镉生物有效性的影响研究[J]. 农业环境科学学报, 2012, 31(2): 312-317.
DING Qiong, YANG Jun-xing, HUA Luo, et al. Cadmium phytoavailability to cowpea decreased by rape straw and red mud with zinc sulphate in a calcareous soil[J]. Journal of Agro-Environment Science, 2012, 31(2): 312-317.
[53]
张亚男, 梁成华, 梁世威, 等. 石灰类钝化剂对土壤镉赋存形态及油麦菜吸收镉的影响[J]. 扬州大学学报(农业与生命科学版), 2017, 38(2): 90-95.
ZHANG Ya-nan, LIANG Cheng-hua, LIANG Shi-wei, et al. Effects of lime-containing substances on cadmium speciation in soil on cadmiumup take by lettuces[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2017, 38(2): 90-95.
[54]
Guo X F, Wei Z B, Wu Q T, et al. Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments[J]. Pedosphere, 2011, 21(5): 650-656. DOI:10.1016/S1002-0160(11)60167-7
[55]
Masaihiko S. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate[J]. Journal of Environmental Sciences, 2007(3): 343-347.
[56]
王林, 秦旭, 徐应明, 等. 污灌区镉污染菜地的植物阻隔和钝化修复研究[J]. 农业环境科学学报, 2014, 33(11): 2111-2117.
WANG Lin, QIN Xu, XU Ying-ming, et al. Phytoexclusion and in-situ immobilization of cadmium in vegetable field in sewage irrigation region[J]. Journal of Agro-Environment Science, 2014, 33(11): 2111-2117. DOI:10.11654/jaes.2014.11.006
[57]
吴帆. Cd胁迫下两种油菜的耐性机制研究[D].雅安: 四川农业大学, 2016.
WU Fan. Tolerance meachanism of two oilseed rape species under cadimium stress[D]. Ya'an: Sichuan Agricultural University, 2016. http://d.g.wanfangdata.com.cn/Thesis_J0128365.aspx
[58]
陈花, 王建军, 杨斌. 镉胁迫对菠菜和油菜早期生长的影响[J]. 山西农业科学, 2016, 44(9): 1308-1311.
CHEN Hua, WANG Jian-jun, YANG Bin. Effects of Cd stress on the early growth of spinach and rape[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(9): 1308-1311. DOI:10.3969/j.issn.1002-2481.2016.09.19
[59]
江海东, 周琴, 李娜, 等. Cd对油菜幼苗生长发育及生理特性的影响[J]. 中国油料作物学报, 2006, 28(1): 39-43.
JIANG Hai-dong, ZHOU Qin, LI Na, et al. Effect of Cd on the growth and physiological characteristics of rape seedlings[J]. Chinese Journal of Oil Crop Sciences, 2006, 28(1): 39-43. DOI:10.3321/j.issn:1007-9084.2006.01.009
[60]
施国新, 解凯彬, 杜开和, 等. Cr6+、As3+污染对黑藻叶细胞伤害的超微结构研究[J]. 南京师大学报(自然科学版), 2001, 24(4): 93-97.
SHI Guo-xin, XIE Kai-bin, DU Kai-he, et al. Ultrastructural study of leaf cells damaged from Cr6+ and As3+ pollution in Hydrilla verticillata[J]. Journal of Nanjing Normal University(Natural Sciences), 2001, 24(4): 93-97. DOI:10.3969/j.issn.1001-4616.2001.04.023