快速检索        
  农业资源与环境学报  2018, Vol. 35 Issue (2): 95-103

文章信息

胡钧铭, 陈胜男, 韦翔华, 夏旭, 韦本辉
HU Jun-ming, CHEN Sheng-nan, WEI Xiang-hua, XIA Xu, WEI Ben-hui
耕作对健康耕层结构的影响及发展趋势
Effects of Tillage Model on Healthy Plough Layer Structure and Its Development Trends
农业资源与环境学报, 2018, 35(2): 95-103
Journal of Agricultural Resources and Environment, 2018, 35(2): 95-103
http://dx.doi.org/10.13254/j.jare.2017.0242

文章历史

收稿日期: 2017-10-09
录用日期: 2017-12-19
耕作对健康耕层结构的影响及发展趋势
胡钧铭1,2,3, 陈胜男1,2,3, 韦翔华3, 夏旭1,5, 韦本辉4     
1. 广西农业科学院农业资源与环境研究所, 广西 南宁 530007;
2. 农业部农业环境重点实验室, 北京 100081;
3. 广西大学农学院, 广西 南宁 530004;
4. 广西农业科学院经济作物研究所, 广西 南宁 530007;
5. 中国农业科学院农业环境与可持续发展研究所, 北京 100081
摘要: 土壤耕作与土地生产力密切相关,土壤耕层中的养分影响作物养分的吸收与利用,良好的耕层结构有利于水、肥、气、热之间相互协调。耕层深度与耕作方式有关,构建良好的健康耕层结构,有利于协调作物生长和根系分布。本文结合有关传统翻耕耕作、免耕、旋耕、深耕等对土壤耕层的研究结果,从土壤容重、土壤孔隙度、土壤团聚体、土壤入渗、土壤重金属、土壤呼吸及根系特征等方面,探讨耕作模式对健康土壤耕层构建的影响,并就耕作体系、系统定位、耕作效率、适生作物方面指出目前土壤耕层研究不足,从因地制宜发展耕作方式、建立综合性耕作体系、加快耕作新型农机的研究应用、开展农田小气候环境系统研究方面展望了构建健康理想耕层结构的发展趋势,以期最大限度地提高耕地资源综合生产能力,缓解人地关系矛盾,为农业生产中最佳耕作模式提供理论基础和技术支撑。
关键词: 耕作模式     耕层构建     健康耕层     生产力    
Effects of Tillage Model on Healthy Plough Layer Structure and Its Development Trends
HU Jun-ming1,2,3, CHEN Sheng-nan1,2,3, WEI Xiang-hua3, XIA Xu1,5, WEI Ben-hui4     
1. Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
2. Key Laboratory for Agricultural Environment, Ministry of Agriculture, Beijing 100081, China;
3. Agricultural College, Guangxi University, Nanning 530004, China;
4. Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
5. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract: Soil cultivation is closely related to land productivity. Nutrient in plough layer is the key factor affecting the absorption and utilization of crop nutrients. Good plough layer structure is beneficial to the coordination of water, fertilizer, gas and heat. The depth of arable layer is related to tillage methods. Constructing good plough layer structure is conducive to crop growth and distribution. This paper reviewed both domestic and foreign researches regarding tillage models, which included conventional tillage, protective cultivation, rotary tillage, deep tillage, and so on. Based on the above research results, the effects of tillage models on the healthy soil layer construction were discussed from the soil bulk density, soil porosity, soil aggregates, infiltration of soil, soil heavy metals, soil respiration and the characters of root system. The deficiencies of current research were pointed out from several aspects such as tillage system, system positioning, tillage efficiency, suitable crop. In order to maximize the comprehensive production capacity of cultivated land resources and solve the contradiction between human being and land, this paper forecasted the development trend of ideal plough layer structure from four aspects:Cultivate patterns according to local conditions, the establishment of complex farming models, accelerating the research and application of new agricultural machinery, conducting systematic research of farmland microclimate environment. This will provide the theoretical basis and technical support for the optimal farming mode in agricultural production.
Key words: tillage model     plough layer construction     healthy plough layer     land productivity    

耕地为土地的精华,不仅给植物提供物理支撑,还为其生长提供必需的营养物质和水分[1]。随着我国人口增加和城市进程加快,农业耕地面积锐减,人地矛盾愈演愈烈[2]。连作已成为我国极为普遍的农业种植方式,生产过程中过分依赖化肥农药及化学品投入增加复种指数,集约化生产导致农用土地资源被过度开发利用,造成土壤酸化、结构性退化、生态环境破坏和恶化,严重影响农产品的质量安全,危及人体健康和环境可持续发展[3-4]。土壤耕作是农业生产中重要的增产措施,现阶段我国农业发展尤为迫切的任务是利用有限的耕地资源,建立节约高效耕作模式,科学高效使用耕地,最大限度提高耕地的综合生产力[5-7]。土壤耕层是农业耕作过程中形成的熟土层,是作物分布的主要层次,耕层中的养分含量影响植物的养分吸收,影响植物生长及产量,反映土地生产能力[8]。协调作物高产与土壤资源高效利用,创造营养均衡的土壤耕层结构是作物增产的重要基础[9]。著名生态学家山仑院士指出,我国近代耕作技术系统缺乏,未形成可以在大范围推行的新的耕作技术体系[10]。健康土壤是农业可持续发展的基础,耕地质量直接影响农产品产量和质量,关系粮食安全,创造健康理想的耕层结构是提高土壤生产力的重要调控途径。本文探讨不同的耕作方式对土壤耕层构建的影响,以期为提高土地综合生产力,构建健康理想耕层提供理论基础和技术支撑。

1 土壤健康耕层

土壤紧实是耕地恶化的综合表征[11]。长期农业集约化生产带来土壤紧实化、耕层薄层化等连作障碍问题逐渐凸显,已对土壤耕层结构、根区环境、根系生长产生了严重危害,阻碍了土层内水、气、热传输,破坏了土壤结构功能,引发土壤酸化、盐渍化、养分失衡、土传性病害加重、生物多样性散失,土壤结构性退化和环境污染日趋严重,造成耕地土壤退化、耕作层变浅,土壤保水保肥能力下降,影响了作物生长和产量,成为制约作物健康生长的关键问题[12]。土壤耕作是调理和遏制土壤耕层退化最直接措施。健康耕层指根据土壤耕层分布特征,通过机械外力对土壤耕层进行自然定向扰动,调节耕层和团粒结构分布,创造一个纳水性强、微生物活性稳定,土壤结构疏松,利于作物根系分布、养分吸收和安全生长的理想根区环境。土壤农耕历史久远,按照土壤耕作措施对土壤影响的深度和强度,包括传统翻耕、旋耕、深松耕及免耕,耕作对土壤耕层结构的影响得到广泛的研究。

2 耕作对耕层结构的影响 2.1 耕作方式对土壤容重的影响

土壤容重反映土壤松紧程度,受土壤质地、结构、有机质及自然因素影响,土壤容重降低有利于水分流通和气体交换,为土壤耕层生物活动和根系生长创造有利环境。与常年传统翻耕比较,免耕减少对土壤翻动,可以改善土壤结构[13],但长期免耕是否会引起土壤板结而影响作物生长是学者普遍关注的问题。免耕使土壤表层容重硬度增加,下层土壤变化不大[14]。免耕土壤容重要高于旋耕、翻耕等其他耕作方式[15-17]。但雷金银等[18]则指出,与传统翻耕相比,免耕表层0~20 cm土壤容重降低,20~40 cm容重增加,40~60 cm土壤容重则基本不受耕作方式的影响。还有研究指出,免少耕的土壤容重较翻耕的低[19],耕层土壤容重在生育前期免耕的较大,后期则少、免耕与常规耕作差异变小,土壤容重并非随少免耕年限的延长而一直递增[20],这可能与不同的研究者选择区域土壤和作物有关。旋耕造成容重增加,阻碍根系下扎[21]。研究表明,深旋松等方式可以打破犁底层,改善土壤性状,降低土壤容重[22]

2.2 耕作方式对土壤团聚体的影响

团聚体是土壤结构的基本单位,是土壤养分“贮藏库”和各种微生物生存的环境[23],直接影响着土壤肥力和农作物的生长,团聚体的数量和质量一直是农业生产研究中的重要方向[24]。土壤团聚体的数量和大小是决定土壤板结等物理过程和幅度的关键指标,其稳定性也是反映土壤结构状况的重要指标之一[25]。耕作是对土壤耕层养分的重要影响因素,耕作降低土壤中大团聚体的数量,不同耕作方式对各土层土壤团聚体的影响程度差别较大,良好的团聚体粒级分布状况是土壤保持良好结构状态,发挥生态和环境功能的基础[26-27]。免耕与翻耕田的机械组成分析比较并无明显差异,都呈团块状结构,几乎看不到大孔隙,但在微团聚体的组成上有较大的变化[28]。与免耕相比,翻耕处理中机械稳定性大,土壤团聚体和水稳定性大,土壤团聚体的数量均有所下降,粒径大于2 mm的水稳定性土壤团聚体的数量呈显著降低[29]。在粘壤土上耕作不利于水稳定性土壤团聚体的形成,在翻耕处理和免耕处理中粒径大于0.25 mm的水稳定性土壤团聚体含量分别为55%和70%[30]。深松土壤团聚体平均重量直径较翻耕处理有更明显地降低[31]

3 耕作对土壤根层透气和呼吸的影响 3.1 耕作方式对土壤孔隙度的影响

土壤孔隙度是耕作压实及土壤生物活动的结果,决定植物生长需要的氧气以及土壤空气和大气交换,对土壤通气、溶质运移和根系穿插及土壤生物活性调节具有重要影响[32]。土壤孔隙度直接影响土壤通气状况及作物生长,土壤孔隙度指标指导着农业生产实践采用的具体措施和方式[33]。传统翻耕在一定程度上可以提高土壤孔隙度,但长期翻耕条件下,耕作机具对土壤底土的碾压,降低土壤孔隙度,限制根系伸展空间[8]。与传统翻耕相比,免耕减小了土壤总孔隙度,但对0~5 cm表层土壤的总孔隙度影响较大[13]。深松或旋耕可打破粘盘层,利于根系伸展及吸收水分、养分[34]。深松能够深入土壤25 cm以下,增加土壤的孔隙度[35]。深松-旋耕、深松-免耕处理的玉米田0~15、16~25、26~35、36~45 cm不同耕层,土壤总孔隙度比翻耕均有所上升[36]。粉垄耕作下高速运转的钻头在带动部分土壤上下交流过程中,同时将空气中的氧气带进土壤中,使氧气充满土壤孔隙,粉垄土壤氧气充足[37]

3.2 耕作方式对土壤呼吸的影响

土壤呼吸指土壤从大气中吸收氧气,同时排出二氧化碳,是土壤碳输出的重要途径,受生物、非生物及人为耕作措施影响,土壤呼吸与土壤耕层结构关系密切[38]。土壤根系、土壤动物、土壤微生物的呼吸作用和有机质的分解,土壤气体中二氧化碳含量一般高于大气,约为大气的5~20倍,土壤呼吸的微小变化,可能导致大气浓度的剧烈改变,特别是在极端条件下诱发的自然灾害会造成农业生产的显著波动[39]。相对传统翻耕而言,免耕、旋耕可以明显降低土壤呼吸,有助于土壤碳的固定,进而减少温室气体排放,减缓全球变暖,少免耕可降低土壤呼吸作用,从而提高农田土壤固碳能力[40]。不同耕作措施对土壤平均呼吸速率的影响表现为翻耕跃深松耕跃旋耕跃免耕[41]。气候变化会给农业生产带来潜在影响[42],发挥人类主观能动性,改变耕作利用模式,规避气候变化对农业生产的不利影响,实施保护性耕作,对于维持或增加土壤碳含量来缓解气候变化,控制二氧化碳排放量,减缓气候变暖步伐具有重要的意义[43]

4 耕作对耕层土壤水分入渗的影响

土壤水是作物根系吸收水分最主要的来源,田间持水量与土壤质地、耕层结构、土壤紧实度、有机质含量等密切相关。土壤渗透性是表征土壤水分入渗快慢的重要指标,土壤渗透性越好,地表径流就会越少[44]。耕作影响土壤水分分布,土壤犁底层或心土层黏粒含量高不利于水分下渗,上层滞水,犁耕阻力大,耕性差,不利于土壤通气。与传统翻耕相比,施行单独免耕方式,显著降低表层土壤水分入渗[45-46]。但免耕结合地表秸秆或生物植被覆盖后则具有较好的渗透性能,可以减小地表径流,同时为土壤贮蓄较多的水分,供作物的生长需要[47-50]。与浅耕相比,深耕更能调蓄水分,深耕打破原有坚硬的犁底层,增加土壤入渗速度,有利于水分入渗[51],且深松后土壤表面粗糙程度增加,阻碍雨水地表径流[52]。降雨前后对比显示,深耕加快雨水的入渗速度,雨水贮蓄能力强[53],可以更好地发挥“土壤水库”的调蓄作用,提高作物蓄水、保墒、抗旱能力[54-55]

5 耕作对耕层肥力和土壤生物多样性的影响 5.1 耕作方式对土壤保肥性能的影响

土壤保肥性是土壤对养分的吸附和保蓄能力,是反映土壤肥沃性的一个重要指标。土壤耕作方式是影响耕层养分垂直分布的重要因素,土壤耕层肥力是衡量土壤能够提供作物生长所需养分的能力。耕作方式改变了土壤肥力质量,土壤适耕性是判断土壤肥力的重要指标。稻田实行免耕前两年产量与翻耕无显著差异,之后免耕产量呈下降趋势[56],主要因为连续免耕造成土壤养分在土壤表层富集,造成土壤板结,土壤养分含量降低,土壤质量下降[57]。合理耕作,有利于创造良好的土壤结构,调节土壤养分的分解和转化,是提高土壤保肥和供肥性能的重要措施。传统翻耕处理土壤耕层较深,土温和土壤含水率较低,旋耕相对常规翻耕具有增产优势,土壤有效养分供应能力得到提高[58],旋耕处理土壤养分含量提升幅度高于常规耕作[59]

5.2 耕作方式对土壤生物多样性的影响

土壤是土壤动物和微生物赖以生存的栖息场所。土壤生物是物质转化的主要驱动者,是土壤生态系统的核心,深刻影响着土壤功能和质量[7]。土壤微生物是土壤生态系统的重要组成部分,土壤微生物数量及活性是土壤肥力的重要指标之一,土壤微生物在土壤有机质的转化过程及土壤肥力的维持方面起着决定作用。土壤微生物数量和种类与耕作方式密切相关,土壤耕作影响土壤生物学特性,不同耕作方式对土壤微生物群落代谢和功能多样性产生影响[60],造成了土壤微生物耕层分布空间异质性[61]。翻耕加速了土壤微生物对有机质的消耗,导致土壤有机碳、氮含量降低[62]。免耕创造的土壤条件与翻耕土壤微环境不同,免耕土壤微生物的数量较翻耕土壤中有所增加,有利于土壤微生物活动[63]。免耕土壤微生物代谢活性明显高于翻耕和旋耕,免耕条件下微生物功能多样性指数、优势度指数和丰富度指数比翻耕和旋耕均显著下降[64]。土壤深耕显著提高了10~30 cm土层的有效养分及生物活性,均衡了耕层土壤生物活性及养分分布[65]。深耕掩埋秸秆和基肥较深,适宜下层土壤微生物活动,提高了10~30 cm土层土壤微生物多样性[66]

6 耕作对土壤耕区环境及根系生长的影响 6.1 耕作方式对土壤重金属的影响

土壤重金属污染会影响土壤环境,抑制作物生长发育,通过食物链富集危害人类健康。重金属在土壤中的含量、有效性及垂直分布状况与成土母质有关,土壤污染受到人类活动影响,耕作方式是影响和改善土壤重金属含量、有效性及垂直分布的重要因素之一[67-68]。土壤剖面中的重金属含量分布状况反映土壤受污染的程度和重金属在土壤中的迁移状况,土壤重金属含量随土层深度增加而降低[69]。免耕条件下土壤各层Cd含量及表层Zn含量均高于常规翻耕[70]。有效态重金属与土壤性质密切相关,土壤pH、重金属有效量的变化是耕作方式影响水稻对重金属吸收的最主要因素[71]。免耕使土壤Mn、Cu、Zn有效量升高[72],土壤pH降低是免耕提高作物对Cu、Zn等重金属吸收量的重要原因[73]。不同耕作方式下,土壤有效Cd和Pb出现表层富集,垄作免耕较翻耕使0~20 cm和20~ 40 cm土层重金属有效量显著增加[74]。长期翻耕和长期旋耕的土壤Cd含量显著偏高,水稻植株地上部分富集Cd能力相对较低。长期免耕则促进了水稻地上部分对Cd的富集,增强了对土壤Cd污染的消减能力,有利于土壤Cd污染的修复[75]

6.2 耕作对耕层根系生长的影响

根层养分与根系发育密切相关,土壤耕层影响土壤环境效应与根层养分调控。根系不仅是支撑器官,而且是作物吸收水分和养分的重要器官,同时也可以合成作物生长发育所需的一些重要代谢物质[76]。根系对作物地上部生长发育和产量形成具有举足轻重的作用[77]。耕作改善土壤环境,进而促进作物根系生长,提高根系活力,减缓根系保护酶活性下降速度[78],同时根系在土壤中穿插过程及根系死后形成的孔道中对土壤耕性产生影响[79]。研究发现土壤免耕方式下根系总干重和根长均大于传统翻耕[80]。冯跃华等[81]研究认为免耕稻在最高分蘖期、孕穗期、齐穗期的根系32P吸收总量和根系氧化力比翻耕稻均有所增加,但邱红波等[82]研究发现,免耕玉米根系的表面积、长度、体积及根尖数均小于翻耕栽培。这可能与研究的土壤类型和种植作物类型有关。也有研究表明,与传统翻耕相比,免耕下耕层作物根系短、分布浅[83]。尽管深松和深翻对当季玉米表层根系的发育不利,但能够促进深层根系的发育[84]。旋耕促进了根系下扎,增强了植株抗倒伏能力[85]

7 健康耕层趋势展望 7.1 构建现代深耕型健康耕作体系

传统翻耕作业流程复杂、生产成本较高等弊端逐渐显现,旋耕技术因其简便低耗得到广泛应用,但长期旋耕引起土壤耕层变浅、土壤紧实,土壤耕性变差[86],同时,我国现行耕作体系的种植制度与养地制度缺乏有效合理协调[87-88],养地次数减少,强度减弱。农田基础设施老化、弱化[89],亟待构建新型耕地养地耕作体系。健康耕层构建依赖现代农业机具和与之配套的耕作制度的不断创新,随着科技发展与进步,现代深耕能有效简化农机作业流程,减少了能源消耗,近年来粉垄深松耕、立式深旋耕与之配套的耕地、养地保护性耕作技术体系得到广泛关注。中国地域辽阔,不同地方的气候、作物、地貌、土壤、种植制度存在较大差异,应结合地方的土壤耕作自然条件及人文、历史等因素,因地制宜从合理利用农耕土壤自然资源角度出发,加快新型农用耕作机械研究与应用,提高我国农田整地农业机械化的应用水平,在实践中不断完善深耕型健康耕作体系,构建具有区域特色的理想耕层结构,提高土地综合生产力。

7.2 开展健康耕层系统定位研究

作物的生长受自身遗传控制[90]、耕作措施影响[91],在不同生长时期对环境有不同的要求[92],传统耕作研究偏重于短期效应研究,在不同的试验条件下,对各耕作模式的评价褒贬不一,同一种耕作措施得到不同的甚至是完全矛盾的试验结果屡见不鲜。土壤连作障碍和气候逆境变化已对作物生长和人类生存产生了惊人的影响。耕作措施作用于作物的生长环境,耕作改变土壤耕层和植物根系分布,改变土壤热量、水分和空气交换,使得土壤水热特性发生变化,影响农田小气候环境,从而影响作物生长发育,耕作模式的效益也通过作物的生长发育最终体现在产量上[93]。目前研究主要集中在农田温室气体排放方面,缺乏耕作、施肥等外因扰动因素影响下农田小气候环境变化响应机理研究,应与作物生产的生态环境、生长季节以及作物需求进行综合分析[94]。根据本地适生作物、农业资源投入及耕作模式,综合考虑经济、技术等条件,突破传统耕作方法,在研究技术上进行改进与创新,采用绿色耕作生产方式和方法,规避土壤逆境变化,因地制宜发展各具特色的低碳绿色耕作模式,开展健康耕层长期系统定位研究,响应国家绿色生态农业转型发展需求。

7.3 进行健康耕层适生型作物研究

土壤健康耕层是实现藏粮于地、藏粮于技战略的重要手段,也是实现发展农业转型、绿色生产的重要措施,关系国家粮食安全与耕地可持续发展。现阶段我国种植业发展中作物的选择主要根据地形、气候等条件,很少有依据土壤耕作方式选择作物品种。目前作物杂种优势利用选育的新品种也是基于传统耕作的土壤生态环境条件而选育,过分依赖高投入高消耗的化学品投入获得高产。不同的耕作对土壤进行了不同程度的扰动,土壤的物理结构、养分状况也会有所变化,作物对其适应性也会有所差异。不同作物对土壤环境的要求不同,作物必须与土壤耕作相适应。目前关于耕作与地上作物的适应性研究比较少,缺乏与健康耕层相配套的适应绿色发展的优质品种,导致耕地作物产量不稳定,投入大、收益低等现象。根据土壤状况,建立测土犁田综合性的耕作体系,结合土壤理化性状的变化, 选择合适的耕作方式,加强以提高土壤自然资源高效转化率、减施化肥增产为目标,调整品种选育策略,加大绿色生产方式和生产技术变革,根据健康耕层模式,开展适生型作物研究,成为环保型、节本型的健康耕作方式。

7.4 加速健康耕层生态修复研究

随着人们对高品质和美好生活的追求不断提升,人们更加关注膳食结构及食品安全。我国大多数地区耕作较差,耕地质量退化严重,水源缺乏、干旱退化、水土流失、污染等问题严重[95]。土壤重金属污染直接影响农业生态环境与粮食生产安全。土壤环境的重金属污染问题已经引起社会和科学界的广泛关注,土壤重金属污染的修复方法主要有土壤钝化和生物修复,但目前修复效果均不理想,探索有效实用的重金属修复技术是未来健康土壤追求的重要目标。单一耕作方式存在一定弊端,需改进耕作方式,充分发挥农业生态功能,以土壤重金属修复对我国农业健康、安全及可持续发展为目标,开展新型的农机、农艺结合的保护型耕作方式,如结合绿肥覆盖方式实行翻耕、旋耕相结合的土壤轮耕或深耕,坚持土壤质量第一,系统开展保护型耕作方式下耕层剖面分布特征及清洁生产方式下土壤重金属污染积累消减程度的研究,在改善土壤肥力的同时,实现污染土壤的有效修复,促进健康土壤可持续转变,形成可以在大范围推行的新型耕作技术体系。

参考文献
[1]
黄新琦, 蔡祖聪. 土壤微生物与作物土传病害控制[J]. 中国科学院院刊, 2017, 32(6): 593-600.
HUANG Xin-qi, CAI Zu-cong. Soil microbes and control of soil-borne diseases[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 593-600. (in Chinese)
[2]
朱会义, 李秀彬, 辛良杰. 现阶段我国耕地利用集约度变化及其政策启示[J]. 自然资源学报, 2007, 22(6): 907-915.
ZHU Hui-yi, LI Xiu-bin, XIN Liang-jie. Intensity change in cultivated Land use in China and its policy implications[J]. Journal of Natural Resources, 2007, 22(6): 907-915. (in Chinese)
[3]
徐明岗, 曾希柏, 黄鸿翔. 现代土壤学的发展趋势与研究重点[J]. 中国土壤与肥料, 2006(6): 1-7.
XU Ming-gang, ZENG Xi-bai, HUANG Hong-xiang. Development trend and priority research area of current soil science[J]. Chinese Soil and Fertilizer, 2006(6): 1-7. DOI:10.11838/sfsc.20060601 (in Chinese)
[4]
张桃林. 加强土壤和产地环境管理促进农业可持续发展[J]. 中国科学院院刊, 2015, 30(4): 435-444.
ZHANG Tao-lin. Strengthening soil and environment management of agricultural producing area, promoting sustainable development of agriculture in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 435-444. (in Chinese)
[5]
李春林, 李连豪, 赵大勇, 等. 北方大型联合整地机设计与试验[M]. 北京: 中国农业大学出版社, 2014.
LI Chun-lin, LI Lian-hao, ZHAO Da-yong, et al. Design and experiment of large-scale combined soil preparation machine in north China[M]. Beijing: China Agricultural University Press, 2014. (in Chinese)
[6]
李洪君. 浅谈以松为主的旱作土壤耕作优点[J]. 中国农村小康科技, 2009(9): 56-57.
LI Hong-jun. A brief talk on the advantages of scarification on soil dry farming tillage[J]. Chinese Countryside Well-off Technology, 2009(9): 56-57. (in Chinese)
[7]
贺纪正, 陆雅海, 傅伯杰. 土壤生物学前沿[M]. 北京: 科学出版社, 2015.
HE Ji-zheng, LU Ya-hai, FU Bo-jie. Soil biology frontier[M]. Beijing: Science Press, 2015. (in Chinese)
[8]
龚振平, 马春梅. 耕作学[M]. 北京: 中国水利水电出版社, 2013.
GONG Zhen-ping, MA Chun-mei. Geoponics[M]. Beijing: China Water Conservancy and Hydropower Press, 2013. (in Chinese)
[9]
张福锁, 崔振岭, 陈新平. 高产高效养分管理技术[M]. 北京: 中国农业大学出版社, 2012.
ZHANG Fu-suo, CUI Zhen-ling, CHEN Xin-ping. Management technigue of high-producing and highly efficient nutrient[M]. Beijing: China Agricultural University Press, 2012. (in Chinese)
[10]
韦本辉. 中国粉垄助力粮食和环境安全[M]. 北京: 中国农业出版社, 2015.
WEI Ben-hui. Chinese smash-ridging help grain and environmental safety[M]. Beijing: China Agricultural Press, 2015. (in Chinese)
[11]
Veenstra J, Horwath W, Mitchell J, et al. Conservation tillage and cover cropping influence soil properties in San Joaquin Valley cotton-tomato crop[J]. California Agriculture, 2006, 60(3): 145-153.
[12]
石彦琴, 陈源泉, 隋鹏, 等. 农田土壤紧实的发生、影响及其改良[J]. 生态学杂志, 2010, 29(10): 2057-2064.
SHI Yan-qin, CHEN Yuan-quan, SUI Peng, et al. Crop land soil compaction:Its causes, influences and improvement[J]. Chinese Journal of Ecology, 2010, 29(10): 2057-2064. (in Chinese)
[13]
郑洪兵, 郑金玉, 罗洋, 等. 长期不同耕作方式下的土壤硬度变化特征[J]. 农业工程学报, 2015, 31(9): 63-69.
ZHENG Hong-bing, ZHENG Jin-yu, LUO Yang, et al. Change characteristic of soil compaction of long-term different tillage methods in cropland[J]. Transactions of the CSAE, 2015, 31(9): 63-69. DOI:10.11975/j.issn.1002-6819.2015.09.011 (in Chinese)
[14]
刘武仁, 郑金玉, 罗洋, 等. 玉米留茬少、免耕对土壤环境的影响[J]. 玉米科学, 2008, 16(4): 123-126.
LIU Wu-ren, ZHENG Jin-yu, LUO Yang, et al. Effects of less-tillage and no-tillage of maize with high stubble on soil environment[J]. Journal of Maize Sciences, 2008, 16(4): 123-126. (in Chinese)
[15]
冯跃华, 邹应斌, 王淑红, 等. 免耕对土壤理化性状和直播稻生长及产量形成的影响[J]. 作物研究, 2004, 18(3): 137-140.
FENG Yue-hua, ZOU Ying-bin, WANG Shu-hong, et al. Impact of zero tillage on the soil characters and the growth and yield formation in direct seeding rice[J]. Crop Research, 2004, 18(3): 137-140. (in Chinese)
[16]
李凤博, 牛永志, 高文玲, 等. 耕作方式和秸秆还田对直播稻田土壤理化性质及其产量的影响[J]. 土壤通报, 2008, 39(3): 549-552.
LI Feng-bo, NIU Yong-zhi, GAO Wen-ling, et al. Effects of on soil physical and chemical properties and yield for direct-seeded rice in tillage and straw returned field[J]. Chinese Journal of Soil Science, 2008, 39(3): 549-552. (in Chinese)
[17]
Shrestha A, Mitchell J P, Hembree K J. Weed seedbank characterization in long-term cotton-tomato rotations in California[J]. Agronomy Journal, 2015, 107(2): 597-604. DOI:10.2134/agronj14.0443
[18]
雷金银, 吴发启, 王健, 等. 保护性耕作对土壤物理特性及玉米产量的影响[J]. 农业工程学报, 2008, 29(10): 40-45.
LEI Jin-yin, WU Fa-qi, WANG Jian, et al. Effects of conservation tillage on soil physical properties and corn yield[J]. Transactions of the CSAE, 2008, 29(10): 40-45. DOI:10.3321/j.issn:1002-6819.2008.10.009 (in Chinese)
[19]
杜金泉, 帅志希, 胡开树, 等. 水稻少免耕技术研究域:高产的系列配套技术[J]. 西南农业学报, 1992, 5(3): 18-22.
DU Jin-quan, SHUAI Zhi-xi, HU Kai-Shu, et al. Light and non-tillage technology of rice(Ⅱ):A series of technology for high-yield[J]. Southwest China Journal of Agricultural Sciences, 1992, 5(3): 18-22. (in Chinese)
[20]
刘世平, 沈新平, 黄细喜. 长期少免耕土壤供肥特征与水稻吸肥规律的研究[J]. 江苏农学院学报, 1995, 16(2): 133-135.
LIU Shi-ping, SHEN Xin-ping, HUANG Xi-xi. The characteristics of soil fertility and rice absorbed nitrogen in long-term minimum or no tillage[J]. Journal of Jiangsu Agricultural College, 1995, 16(2): 133-135. (in Chinese)
[21]
孔凡磊, 陈阜, 张海林, 等. 轮耕对土壤物理性状和冬小麦产量的影响[J]. 农业工程学报, 2010, 26(8): 150-155.
KONG Fan-lei, CHEN Fu, ZHANG Hai-lin, et al. Effects of rotational tillage on soil physical properties and winter wheat yield[J]. Transactions of the CSAE, 2010, 26(8): 150-155. (in Chinese)
[22]
梁金凤, 齐庆振, 贾小红, 等. 不同耕作方式对土壤性质与玉米生长的影响研究[J]. 生态环境学报, 2010, 19(4): 945-950.
LIANG Jin-feng, QI Qing-zhen, JIA Xiao-hong, et al. Effects of different tillage managements on soil properties and corn growth[J]. Ecology and Environmental Sciences, 2010, 19(4): 945-950. (in Chinese)
[23]
Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. DOI:10.1016/j.still.2004.03.008
[24]
Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103. DOI:10.1016/S0038-0717(00)00179-6
[25]
Beare M H, Hendrix P E, Coleman D C. Water-stable aggregates and organic matter fractions in conventional and no tillage soils[J]. Soil Science Society of America Journal, 1994, 58(3): 777-786. DOI:10.2136/sssaj1994.03615995005800030020x
[26]
Hajabbasi M A, Hemmat A. Tillage impacts on aggregate stability and crop productivity in a clay-loam soil in central Iran[J]. Soil and Tillage Research, 2000, 56(3): 205-212.
[27]
Vanelsas J D, Garbeva P, Salles J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens[J]. Biodegradation, 2002, 13(1): 29-40. DOI:10.1023/A:1016393915414
[28]
陆承相, 田维恩, 代秀明. 免耕耕作对土壤理化性状的影响[J]. 农家之友(理论版), 2010(3): 42-45.
LU Cheng-xiang, TIAN Wei-en, DAI Xiu-ming. The effects of no-tillage on soil physical and chemical characters[J]. Nong Jia Zhi You, 2010(3): 42-45. (in Chinese)
[29]
Ball B R, Roy R C, Swanton C J. Tillage alters corn root distribution in coarse-textured soil[J]. Soil and Tillage Research, 1998, 45(3-4): 237-249. DOI:10.1016/S0167-1987(97)00086-X
[30]
Hajabbasi M A, Hemmat A. Tillage impacts on aggregate stability and crop productivity in a clay-loam soil in central Iran[J]. Soil Tillage Research, 2000, 56(3-4): 205-212. DOI:10.1016/S0167-1987(00)00140-9
[31]
Alvaro J, Arrue J L, Cantero C, et al. Aggregate breakdown during tillage in a Mediterranean loamy soil[J]. Soil and Tillage Research, 2008, 101(1-2): 62-68. DOI:10.1016/j.still.2008.06.004
[32]
杨如萍, 郭贤仕, 吕军峰, 等. 不同耕作和种植模式对土壤团聚体分布及稳定性的影响[J]. 水土保持学报, 2010, 24(1): 252-256.
YANG Ru-ping, GUO Xian-shi, LU Jun-feng, et al. Affects of distribution and stability on soil aggregate in different patterns of tillage and cropping[J]. Journal of Soil and Water Conservation, 2010, 24(1): 252-256. (in Chinese)
[33]
李玉洁, 王慧, 赵建宁, 等. 耕作方式对农田土壤理化因子和生物学特性的影响[J]. 应用生态学报, 2015, 26(3): 939-948.
LI Yu-jie, WANG Hui, ZHAO Jian-ning, et al. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland:A review[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 939-948. (in Chinese)
[34]
苏有健, 王烨军, 张永利, 等. 不同耕作方式对茶园土壤物理性状及茶叶产量的影响[J]. 应用生态学报, 2015, 26(12): 3723-3729.
SU You-jian, WANG Ye-jun, ZHANG Yong-li, et al. Effects of different tillage methods on tea garden soil physical characteristics and tea yield[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3723-3729. (in Chinese)
[35]
宿庆瑞, 迟凤琴, 张久明, 等. 不同耕作技术模式对土壤理化性状及大豆产量的影响[J]. 大豆科学, 2010, 29(3): 453-456.
SU Qing-rui, CHI Feng-qin, ZHANG Jiu-ming, et al. Effects of different cultivation technique patterns on soil physical-chemical properties and yield of soybean[J]. Soybean Science, 2010, 29(3): 453-456. (in Chinese)
[36]
范继征, 闫飞燕, 石达金, 等. 不同耕作方式对玉米田土壤物理性质及产量的影响[J]. 玉米科学, 2016, 24(1): 96-101.
FAN Ji-zheng, YAN Fei-yan, SHI Da-jin, et al. Effect of different tillage management on soil physical properties and maize yield[J]. Journal of Maize Sciences, 2016, 24(1): 96-101. (in Chinese)
[37]
韦本辉, 甘秀芹, 陈保善, 等. 农耕新方法粉垄整地土壤速效养分研究[J]. 广东农业科学, 2011, 38(17): 42-45.
WEI Ben-hui, GAN Xiu-qin, CHEN Bao-shan, et al. Study on available nutrients of soil by a new method of farming which land preparation by smash-ridging[J]. Guangdong Agricultural Sciences, 2011, 38(17): 42-45. DOI:10.3969/j.issn.1004-874X.2011.17.016 (in Chinese)
[38]
贺美, 王迎春, 王立刚, 等. 不同耕作措施对黑土碳排放和活性碳库的影响[J]. 土壤通报, 2016, 47(5): 1195-1202.
HE Mei, WANG Ying-chun, WANG Li-gang, et al. Effect of different tillage managements on carbon dioxide emission and content of activated carbon in black soil[J]. Chinese Journal of Soil Science, 2016, 47(5): 1195-1202. (in Chinese)
[39]
潘根兴, 高民, 胡国华, 等. 气候变化对中国农业生产的影响[J]. 农业环境科学学报, 2011, 30(9): 1698-1706.
PAN Gen-xing, GAO Min, HU Guo-hua, et al. Impacts of climate change on agricultural production of China[J]. Journal of Agro-Environment Science, 2011, 30(9): 1698-1706. (in Chinese)
[40]
孟凡乔, 关桂红, 张庆忠, 等. 华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J]. 环境科学学报, 2006, 26(6): 992-999.
MENG Fan-qiao, GUAN Gui-hong, ZHANG Qing-zhong, et al. Seasonal variation in soil respiration under different long-term cultivation practices on high yield farm land in the North China Plain[J]. Acta Scientiae Circumstantiae, 2006, 26(6): 992-999. (in Chinese)
[41]
禄兴丽, 廖允成. 不同耕作措施对旱作夏玉米田土壤呼吸及根呼吸的影响[J]. 环境科学, 2015, 36(6): 2266-2273.
LU Xing-li, LIAO Yun-cheng. Effects of tillage on soil respiration and root respiration under rain-fed summer corn field[J]. Envionmental Science, 2015, 36(6): 2266-2273. (in Chinese)
[42]
刘爽, 严昌荣, 何文清, 等. 不同耕作措施下旱地农田土壤呼吸及其影响因素[J]. 生态学报, 2010, 30(11): 2919-2924.
LIU Shuang, YAN Chang-rong, HE Wen-qing, et al. Soil respiration and its affected factors under different tillage systems in dryland production systems[J]. Acta Ecologica Sinica, 2010, 30(11): 2919-2924. (in Chinese)
[43]
刘彦随, 刘玉, 郭丽英. 气候变化对中国农业生产的影响及应对策略[J]. 中国生态农业学报, 2010, 18(4): 905-910.
LIU Yan-sui, LIU Yu, GUO Li-ying. Impact of climatic change on agricultural production and response strategies in China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 905-910. (in Chinese)
[44]
高建华, 张承中. 不同保护性耕作措施对黄土高原旱作农田土壤物理结构的影响[J]. 干旱地区农业研究, 2010, 28(4): 192-196.
GAO Jian-hua, ZHANG Cheng-zhong. The effects of different conservation tillage on soil physical structures of dry farmland in the Loess Plateau[J]. Agricultural Reaserch in the Arid Areas, 2010, 28(4): 192-196. (in Chinese)
[45]
罗珠珠. 保护性耕作对黄土高原旱地土壤渗透性能的影响[D]. 兰州: 甘肃农业大学, 2005.
LUO Zhu-zhu. Effects under conservation tillage system on soil water infiltration characteristics in semi-arid area of the west Loess Plataeu[D]. Lanzhou: Gansu Agricutual University, 2005. (in Chinese)
[46]
田佳乔. 少免耕和秸秆还田对土壤理化性质及作物周年产量的影响[D]. 成都: 四川农业大学, 2012.
TIAN Jia-qiao. The effects of minimum tillage or no-tillage and straw returning on soil physical and chemical characters and crop annual output[D]. Chengdu: Sichuan Agricultural University, 2012. (in Chinese)
[47]
王育红, 蔡典雄, 姚宇卿, 等. 保护性耕作对豫西黄土坡耕地降水产流、土壤水分入渗及分配的影响[J]. 水土保持学报, 2008, 22(2): 29-31, 37.
WANG Yu-hong, CAI Dian-xiong, YAO Yu-qing, et al. Effects of conservation tillage on rainfall runoff, soil water infiltration and distribution on loess sloping farming in the western part of Henan[J]. Journal of Soil and Water Conservation, 2008, 22(2): 29-31, 37. (in Chinese)
[48]
Klamkowski K, Treder W, Tryngielgac A. Influence of mulch on rain fall interception in apple orchard[J]. Sodininkyste Ir Darzininkyste, 2011, 30(2): 15-20.
[49]
袁久芹, 梁音, 曹龙熹. 红壤坡地香根草植物篱产流产沙过程模拟[J]. 中国水土保持科学, 2014, 12(4): 14-20.
YUAN Jiu-qin, LIANG Yin, CAO Long-xi. Simulation on the process of runoff and sediment yield of Vetiveria zizanioides L. hedgerow in red-soil hilly area[J]. Science of Soil and Water Conservation, 2014, 12(4): 14-20. (in Chinese)
[50]
王娟. 旱作枣树覆盖耕作土壤水分养分动态模拟试验研究[D]. 杨凌: 西北农林科技大学, 2015.
WANG Juan. Simulation study on soil water and nutrients dynamics under mulching and tillage with dry jujube trees[D]. Yangling: Northwest A&F University, 2015. (in Chinese)
[51]
胡振琪, ChongS K. 深耕对复垦土壤物理特性改良的研究[J]. 土壤通报, 1999, 30(6): 248-250, 264.
HU Zhen-qi, Chong S K. Study on improvement of physical properties of reclaimed soil by deep-plowing[J]. Chinese Journal of Soil Science, 1999, 30(6): 248-250, 264. (in Chinese)
[52]
彭志祥. 机械深耕技术要求与益处分析[J]. 农业开发与装备, 2016(8): 103.
PENG Zhi-xiang. Analysis on technical requirements and benefits of mechanical deep-plowing[J]. Agricultural Development and Equipment, 2016(8): 103. (in Chinese)
[53]
孙仕军, 闫瀛, 张旭东, 等. 不同耕作深度对玉米田间土壤水分和生长状况的影响[J]. 沈阳农业大学学报, 2010, 41(4): 458-462.
SUN Shi-jun, YAN Ying, ZHANG Xu-dong, et al. Effect of plowing depth on soil moisture and plant growth status in maize field[J]. Journal of Shenyang Agricultural University, 2010, 41(4): 458-462. (in Chinese)
[54]
杨少俊, 孙啸虎. 土壤深耕是农田蓄水增产的关键[J]. 农业科技与信息, 2005, 11: 33.
YANG Shao-jun, SUN Xiao-hu. Soil deep tillage is the key of accumulation of water and yield increase[J]. Agricultural Science and Technology and Information, 2005, 11: 35. (in Chinese)
[55]
尹宝重, 张永升, 甄文超. 海河低平原渠灌区麦田深松的节水增产效应研究[J]. 中国农业科学, 2015, 48(7): 1311-1320.
YIN Bao-zhong, ZHANG Yong-sheng, ZHEN Wen-chao. Effects of sub-soiling tillage on wheat field water-saving and yield-increasing in canal irrigation district of Haihe Lowland Plain[J]. Scientia Agricultura Sinica, 2015, 48(7): 1311-1320. DOI:10.3864/j.issn.0578-1752.2015.07.06 (in Chinese)
[56]
吴建富, 潘晓华, 王璐, 等. 双季抛栽条件下连续免耕对水稻产量和土壤肥力的影响[J]. 中国农业科学, 2010, 43(15): 3159-3167.
WU Jian-fu, PAN Xiao-hua, WANG Lu, et al. Effects of continuous no-tillage on crop yield and soil fertility in double rice cropping system[J]. Scientia Agricultura Sinica, 2010, 43(15): 3159-3167. DOI:10.3864/j.issn.0578-1752.2010.15.013 (in Chinese)
[57]
陈畅. 连续免耕与秸秆还田对土壤养分含量和水稻产量的影响[D]. 扬州: 扬州大学, 2015.
CHEN Chang. The effects of no tillage and straw returning continuously on soil nutrient content and rice yield[D]. Yangzhou: Yangzhou University, 2015. (in Chinese)
[58]
陈敏, 胡雄伟, 鲁霞飞, 等. 不同耕作方式下稻草还田的土壤肥力与产量效应研究[J]. 湖南农业科学, 2010(23): 48-50.
CHEN Min, HU Xiong-wei, LU Xia-fei, et al. Soil fertility and yield effects of rice straw returning under different cultivation methods[J]. Hunan Agricultural Sciences, 2010(23): 48-50. DOI:10.3969/j.issn.1006-060X.2010.23.015 (in Chinese)
[59]
李纯燕, 杨恒山, 萨如拉, 等. 不同耕作措施下秸秆还田对土壤速效养分和微生物量的影响[J]. 水土保持学报, 2017, 31(1): 197-201.
LI Chun-yan, YANG Heng-shan, SA Ru-la, et al. Effect of straw returning on soil available nutrients and microbe biomass under different tillage methods[J]. Journal of Soil and Water Conservation, 2017, 31(1): 197-201. (in Chinese)
[60]
赵亚丽, 郭海斌, 薛志伟, 等. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J]. 应用生态学报, 2015, 26(6): 1785-1792.
ZHAO Ya-li, GUO Hai-bin, XUE Zhi-wei, et al. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chin J Appl Ecol, 2015, 26(6): 1785-1792. (in Chinese)
[61]
ZHU Li-qun, HU Nai-juan, YANG Min-fang, et al. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system[J]. PLos One, 2014, 9(2): e88900. DOI:10.1371/journal.pone.0088900
[62]
Friedrich T, Derpsch R, Kassam A. Overview of the global spread of conservation agriculture[J]. Field Actions Science Report, 2012(6): 1941-1945.
[63]
程教擘, 陈力力, 李梦丹, 等. 不同耕作方式对稻田土壤微生物的影响[J]. 湖南农业科学, 2017(8): 8-10.
CHENG Jiao-bo, CHEN Li-li, LI Meng-dan, et al. Effects of different tillage methods on soil microorganisms in rice field[J]. Hunan Agricultural Sciences, 2017(8): 8-10. (in Chinese)
[64]
姬艳艳, 张贵龙, 张瑞, 等. 耕作方式对农田土壤微生物功能多样性的影响[J]. 中国农学通报, 2013, 29(6): 117-123.
JI Yan-yan, ZHANG Gui-long, ZHANG Rui, et al. Effects of different tillage modes on metabolic functional diversity of soil microbial community[J]. Chinese Agricultural Science Bulletin, 2013, 29(6): 117-123. DOI:10.11924/j.issn.1000-6850.2012-1027 (in Chinese)
[65]
LUO Zhong-kui, WANG En-li, SUN Osbert. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments[J]. Agric Ecosyst Environ, 2010, 139(1-2): 224-231. DOI:10.1016/j.agee.2010.08.006
[66]
Piovanelli C, Gamba C, Brandi G. Tillage choices affect biochemical properties in the soil profile[J]. Soil Till Res, 2006, 90(1-2): 84-92. DOI:10.1016/j.still.2005.08.013
[67]
Shuman L M, Hargrove W L. Effect of tillage on the distribution of manganese, copper, iron, and zinc in soil fractions[J]. Soil Science Society of America Journal, 1985, 49(5): 1117-1121. DOI:10.2136/sssaj1985.03615995004900050009x
[68]
Lavado R S, Porcelli C A, Alvarez R. Concentration and distribution of extractable elements in a soil as affected by tillage systems and fertilization[J]. Science of the Total Environment, 1999, 232(3): 185-191. DOI:10.1016/S0048-9697(99)00095-9
[69]
刘洪莲, 李恋卿, 潘根兴. 苏南某些水稻土中Cu、Pb、Hg、As的剖面分布及其影响因素[J]. 农业环境科学学报, 2006, 25(5): 1221-1227.
LIU Hong-lian, LI Lian-qing, PAN Gen-xing. Profile distribution of total Cu, Pb, Hg, As in some paddy soils from the southern Jiangsu, China and the influencing factors[J]. Journal of Agro-Environment Science, 2006, 25(5): 1221-1227. (in Chinese)
[70]
Düring R A, Ho βT, Gth S. Depth distribution and bioavailability of pollutants in long-term differently tilled soils[J]. Soil and Tillage Research, 2002, 66(2): 183-195. DOI:10.1016/S0167-1987(02)00026-0
[71]
常同举, 崔孝强, 阮震, 等. 长期不同耕作方式对紫色水稻土重金属含量及有效性的影响[J]. 环境科学, 2014, 35(6): 2381-2391.
CHANG Tong-ju, CUI Xiao-qiang, RUAN Zhen, et al. Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil[J]. Environmental Science, 2014, 35(6): 2381-2391. (in Chinese)
[72]
Santiago A, Quintero J M, Delgado A. Long-term effects of tillage on the availability of iron, copper, manganese, and zinc in a Spanish Vertisol[J]. Soil and Tillage Research, 2008, 98(2): 200-207. DOI:10.1016/j.still.2008.01.002
[73]
Carter M R, Gupta U C. Micronutrient concentrations in barley and soybean under minimum tillage on podzolic soils in a cool climate[J]. Acta Agriculturae Scandinavica, Section B-Soil&Plant Science, 1997, 47(1): 7-13.
[74]
崔孝强, 阮震, 刘丹, 等. 耕作方式对稻原油轮作系统土壤理化性质及重金属有效性的影响[J]. 水土保持学报, 2012, 26(5): 73-77.
CUI Xiao-qiang, RUAN Zhen, LIU Dan, et al. Effect of tillage methods on physicochemical properties and heavy metal availability of soils in rice-rape rotation systems[J]. Journal of Soil and Water Conservation, 2012, 26(5): 73-77. (in Chinese)
[75]
汤文光, 肖小平, 唐海明, 等. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响[J]. 应用生态学报, 2015, 26(1): 168-176.
TANG Wen-guang, XIAO Xiao-ping, TANG Hai-ming, et al. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 168-176. (in Chinese)
[76]
陆定志. 杂交水稻根系生理优势及其与地上部性状的关联研究[J]. 中国水稻科学, 1987, 1(2): 81-94.
LU Ding-zhi. The association study of physiological dominance and aboveground traits in hybrid rice[J]. Chinese Journal of Rice Science, 1987, 1(2): 81-94. (in Chinese)
[77]
代贵金, 岩石真嗣, 三木孝昭, 等. 不同耕作与施肥方法对水稻根系生长分布和活性的影响[J]. 沈阳农业大学学报, 2008, 39(3): 274-278.
DAI Gui-jin, Lwayishi Shinji, Miki Takaaki, et al. Effects of root distribution, growth and vigor of Japonica rice with different cultivations and fertilizations[J]. Journal of Shenyang Agricultural University, 2008, 39(3): 274-278. (in Chinese)
[78]
马立婷, 王沣, 田平, 等. 耕作方式与玉米根系功能及其保护酶活性关系研究[J]. 玉米科学, 2017, 25(3): 59-64.
MA Li-ting, WANG Feng, TIAN Ping, et al. Relationship between tillage patterns and the function and protective enzyme activity of root in maize[J]. Journal of Maize Sciences, 2017, 25(3): 59-64. (in Chinese)
[79]
Wang Da-li, Yin Cheng-qing. Functions of root channels in the soil system[J]. Acta Ecologica Sinica, 2000, 20(5): 869-874.
[80]
冯福学, 黄高宝, 柴强, 等. 不同耕作措施对冬小麦根系时空分布和产量的影响[J]. 生态学报, 2009, 29(5): 2499-2506.
FENG Fu-xue, HUANG Gao-bao, CHAI Qiang, et al. Effects of different tillage on spatiotemporal distribution of winter wheat root and yield[J]. Acta Ecologica Sinica, 2009, 29(5): 2499-2506. (in Chinese)
[81]
冯跃华, 邹应斌, RolandJ Buresh, 等. 不同耕作方式对杂交水稻根系特性及产量的影响[J]. 中国农业科学, 2006, 39(4): 693-701.
FENG Yue-hua, ZOU Ying-bin, Buresh R J, et al. Effects of different tillage system on the root properties and the yield in hybrid rice[J]. Scientia Agricultura Sinica, 2006, 39(4): 693-701. (in Chinese)
[82]
邱红波, 何腾兵, 龙友华, 等. 免耕栽培对玉米根系性状及其产量的影响[J]. 贵州农业科学, 2011, 39(9): 55-57.
QIU Hong-bo, HE Teng-bing, LONG You-hua, et al. Effect of no-tillage cultivation on maize root characters and yield[J]. Guizhou Agricultural Sciences, 2011, 39(9): 55-57. (in Chinese)
[83]
张音霄, 邹洪涛, 张玉龙, 等. 免耕年限对东北旱田土壤性质及玉米根系、产量的影响[J]. 土壤通报, 2015, 46(2): 433-437.
ZHANG Yin-xiao, ZOU Hong-tao, ZHANG Yu-long, et al. Effects of no-tillage years on soil properties and maize growth[J]. Chinese Journal of Soil Science, 2015, 46(2): 433-437. (in Chinese)
[84]
战秀梅, 李秀龙, 韩晓日, 等. 深耕及秸秆还田对春玉米产量、花后碳氮积累及根系特征的影响[J]. 沈阳农业大学学报, 2012, 43(4): 461-466.
ZHAN Xiu-mei, LI Xiu-long, HAN Xiao-ri, et al. Effects of subsoiling and straw-returning on yield and post-anthesis dry matter and nitrogen accumulation and root characteristics of spring maize[J]. Journal of Shenyang Agricultural University, 2012, 43(4): 461-466. (in Chinese)
[85]
贾桂平, 边大红, 蔡丽君, 等. 土壤耕作方式对夏玉米抗茎倒伏能力的影响[J]. 华北农学报, 2013, 28(4): 163-168.
JIA Gui-ping, BIAN Da-hong, CAI Li-jun, et al. Soil tillage methods on stalk lodging resistance of summer maize[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(4): 163-168. (in Chinese)
[86]
聂良鹏, 郭利伟, 牛海燕, 等. 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响[J]. 作物学报, 2015, 41: 468-478.
NIE Liang-peng, GUO LI-wei, NIU Hai-yan, et al. Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system[J]. Acta Agron Sinica, 2015, 41: 468-478. (in Chinese)
[87]
王向辉. 西北地区环境变迁与农业可持续发展研究[D]. 杨凌: 西北农林科技大学, 2012.
WANG Xiang-hui. Environmental change and sustainable development of agricultural in northwestern China[D]. Yangling: Northwest A&F University, 2012. (in Chinese)
[88]
黄国勤. 中国南方稻田耕作制度的发展[J]. 耕作与栽培, 2006(3): 1-5, 28.
HUANG Guo-qin. The development of south rice field tillage system in China[J]. Tillage and Cultivation, 2006(3): 1-5, 28. (in Chinese)
[89]
黄国勤. 南方稻田耕作制度可持续发展面临的十大问题[J]. 耕作与栽培, 2009(3): 1-2, 5.
HUANG Guo-qin. The top ten problems in the sustainable development of paddy field tillage system in south China[J]. Tillage and Cultivation, 2009(3): 1-2, 5. (in Chinese)
[90]
李生平, 段远霖, 陈志伟, 等. 水稻生长发育多效基因DDF1的遗传分析与基因定位[J]. 遗传, 2011, 33(12): 1374-1379.
LI Sheng-ping, DUAN Yuan-lin, CHEN Zhi-wei, et al. Genetic analysis and gene mapping of DDF1, a pleiotropic gene involving in both vegetable and reproductive growth in rice[J]. Hereditas, 2011, 33(12): 1374-1379. (in Chinese)
[91]
张建省, 隋鹏, 陈源泉, 等. 不同耕法和培肥措施组合对作物产量的影响[J]. 生态学杂志, 2013, 32(10): 2721-2727.
ZHANG Jian-sheng, SUI Peng, CHEN Yuan-quan, et al. Crop yield response to different tillage modes combined with fertilization measures[J]. Chinese Journal of Ecology, 2013, 32(10): 2721-2727. (in Chinese)
[92]
周宁, 沈士博, 景立权, 等. 自由空气中CO2浓度和温度增高对粳稻叶片光合作用日变化的影响[J]. 生态学杂志, 2016, 35(9): 2404-2416.
ZHOU Ning, SHEN Shi-bo, JING Li-quan, et al. Effects of elevated atmospheric CO2 and temperature on diurnal courses of photosynthesis in leaves of Japonica rice[J]. Chinese Journal of Ecology, 2016, 35(9): 2404-2416. (in Chinese)
[93]
谢瑞芝, 李少昆, 李小君, 等. 中国保护性耕作研究分析-保护性耕作与作物生产[J]. 中国农业科学, 2007, 40(9): 1914-1924.
XIE Rui-zhi, LI Shao-kun, LI Xiao-jun, et al. The analysis of conservation tillage in China-conservation tillage and crop production:Reviewing the evidence[J]. Scientia Agricultura Sinica, 2007, 40(9): 1914-1924. (in Chinese)
[94]
薛建福, 赵鑫, ShadrackBatsile Dikgwatlhe, 等. 保护性耕作对农田碳、氮效应的影响研究进展[J]. 生态学报, 2013(19): 6006-6013.
XUE Jian-fu, ZHAO Xin, Shadrack B D, et al. Advances in effects of conservation tillage on soil organic carbon and nitrogen[J]. Acta Ecologoca Sinica, 2013(19): 6006-6013. (in Chinese)
[95]
李悦. 基于我国资源环境问题区域差异的生态文明评价指标体系研究[D]. 武汉: 中国地质大学, 2015.
LI Yue. Study on the evaluation index system of ecological civilization based on the regional difference of resources and environment problems[D]. Wuhan: China University of Geosciences, 2015. (in Chinese)