文章信息
- 魏琳琳, 倪土, 臧怀敏, 李刚, 修伟明, 杨殿林, 赵建宁
- WEI Lin-lin, NI Tu, ZANG Huai-min, LI Gang, XIU Wei-ming, YANG Dian-lin, ZHAO Jian-ning
- 磷高效转基因水稻OsPT4对红壤无机磷组成的影响
- Effects of P-efficient Transgenic Rice OsPT4 on Inorganic Phosphorus Fractions in Red Soil
- 农业资源与环境学报, 2017, 34(5): 414-421
- Journal of Agricultural Resources and Environment, 2017, 34(5): 414-421
- http://dx.doi.org/10.13254/j.jare.2017.0077
-
文章历史
- 收稿日期: 2017-03-20
磷既是作物生长、生理必需的三大营养元素之一,同时也是植物体内诸多化合物的主要组成成分[1]。植物所需的磷素主要从土壤中获得,土壤中的磷素可根据其化学组成分为有机态磷和无机态磷,其中无机态磷是土壤供磷的主体,一般情况下,占旱地土壤无机磷70%以上,占水稻土的55%~70%[2]。无机磷作为植物直接吸收利用的磷源,其存在形态、含量及生物有效性等直接影响着作物对磷素的吸收利用[3]。蔡秋燕[4]发现磷高效基因型大麦的种植会提高土壤中A1-P、Ca-P和Fe-P含量,徐静等[3]研究发现磷高效型大麦与磷低效型种植的土壤中无机磷各组分含量在不同生育期和施肥处理条件下存在明显差异,张锡洲等[5]的研究结果也发现低磷胁迫下,磷高效基因型小麦活化吸收土壤中Al-P、Ca-P、活性有机磷能力强于低效品种。但是目前关于转基因作物对土壤无机磷各组分含量影响的研究报道较少[6]。
磷高效转基因水稻OsPT4是通过利用转基因技术将磷酸盐转运蛋白基因OsPT4导人日本晴(Nipp)获得的超表达材料,该材料可以加速磷的吸收和转运,与常规稻相比,地下部有效磷量平均增加了8%~ 15%,地上部平均增加了7%~20%[7]。磷高效突变体材料PHO2是将编码OsLTN1基因的DNA片段通过载体导人水稻后获得的磷高效突变体植株,该材料增加了植株磷素的吸收和转运能力[8]
磷高效转基因水稻的土壤磷素吸收量增加,势必会打破土壤中磷素的原有平衡,进而可能会影响根际及非根际土壤无机磷组分[9]。因此,为探求磷高效转基因水稻OsPT4对土壤无机磷组成含量的影响,本文利用根盒试验研究施磷和不施磷处理条件下磷高效转基因水稻种植对根际和非根际土壤无机磷组分的影响及其变化规律,为磷高效转基因水稻的土壤安全性评价提供理论依据。
1 材料与方法 1.1 供试土壤试验于2015年5-7月,在农业部环境保护科研监测所网室进行,供试土壤为江西鹰潭农田生态系统国家野外科学观测研究站的红壤,pH值4.70,全磷含量0.481 g·kg-1,全氮含量0.741 g·kg-1,有机质含量为17.39 g·kg-1,速效磷含量15.42 g·kg-1。基本土样无机磷分组中O-P为139.50 mg·kg-1,Fe-P为66.75 mg·kg-1,Ca-P为17.28 mg·kg-1,Al-P为24.06 mg·kg-1,无机磷总量为247.59 mg·kg-1。
1.2 试验材料试验所用水稻基因型为:磷高效转基因水稻(OsPT4)、磷高效突变体水稻(PHO2)、对照日本晴(Nipp),均由南京农业大学资源与环境学院植物营养分子生物学实验室提供。播种日期为2015年5月22日,每个根室播种5粒水稻种子,待发芽后留3株长势一致植株,培养60d后收获取样。
1.3 试验设计试验米用13cm×8cm×12cm(长×宽×高)的非透明有机玻璃三室根盒(图 1),根室和两个土壤室之间用30 μm孔径的尼龙网相隔,每侧土壤室体积均为480 cm3, 中间根室体积为288 cm3。将取自江西鹰潭农田生态系统国家野外科学观测研究站的红壤经自然风干,过1 mm筛,然后装人根箱中,每个根箱装土1 kg。
![]() |
图 1 三室根盒示意图 Figure 1 Schematic diagram of three rooms of the root box |
试验设2个施磷水平,不施磷(-P)、施磷100 mg·kg-1(+P)。氮150 mg·kg-1和钾150 mg·kg-1,播种前施人。每个处理重复5次。采集土样时拆除根箱周围的有机玻璃板,将左右两室距尼龙筛网0~4 mm的土样混合,作为根际土壤;两土壤室1~3 cm土样混合,作为非根际土壤。采集的土壤经风干、研磨、过筛后备用。
1.4 测定方法植株全磷的测定:HClO4-H2SO4消煮,钼锑抗比色法测定[10],用植株干物质的量乘以植物磷浓度(g·kg-1)计算。
土壤全磷含量:HClO4-H2SO4消煮,钼锑抗比色法测定[10]。
土壤无机磷的组分:蒋柏藩-顾益初土壤无机磷分级法[11]。
1.5 数据分析采用Excel 2010和SAS9.1.3软件对数据进行统计分析,并用Duncan法进行差异显著性分析。
2 结果与分析 2.1 磷高效转基因水稻的生物量特征对水稻生物量和磷素积累量的分析结果发现(表 1),施磷条件下OsPT4和PHO2的植株生物量和磷素积累量均显著高于Nipp,不施磷条件下3种水稻间植株生物量无显著差异,但OsPT4和PHO2的植株磷素积累量却显著高于Nipp。
对红壤全磷含量进行分析发现施磷和不施磷处理时红壤全磷含量均表现为Nipp > OsPT4 > PHO2 (图 2)。在供磷条件下3种水稻材料的根际土壤全磷含量均低于非根际土壤,但不同基因型水稻无显著差异。缺磷条件下却表现出与供磷完全相反的现象,且Nipp和OsPT4的根际和非根际土壤全磷含量均显著高于PHO2。两种供磷条件下,同一种水稻的根际与非根际土壤全磷含量未出现显著差异。
![]() |
图中不同字母表示基因型间差异显著(P < 0.05)。下同 Different letters in the same column indicate significant difference among different genotypes at 0.05 level. The same below 图 2 不同基因型水稻根际、非根际土壤全磷含量 Figure 2 Total P content in rhizospheric, non-rhizospheric soils of different rice varieties |
对土壤有效磷含量研究发现(表 2),在两种供磷处理条件下,3种基因型水稻根际土壤有效磷含量均无显著差异,而非根际土壤有效磷含量则表现磷高效突变体(PHO2) 在施磷条件下显著高于磷高效转基因型(OsPT4),不施磷条件下,3种水稻材料非根际土壤有效磷含量无显著差异。
对土壤水溶性磷含量研究发现(表 2),施磷条件下,OsPT4根际和非根际土壤水溶性磷含量均显著低于Nipp和PHO2,不施磷条件下,Nipp仅根际土壤显著低于OsPT4和PHO2, 其余均无明显影响。
2.3 磷高效转基因水稻红壤无机磷总量对红壤无机磷总量进行数据分析(图 3),结果发现施磷处理时,3种水稻材料的根际土壤无机磷总量无显著差异,OsPT4和PHO2的非根际土壤无机磷总量显著低于Nipp; 不施磷处理时,Nipp和OsPT4的根际土壤无机磷总量显著高于PHO2(P < 0.05),非根际土壤无机磷总量表现为Nipp > OsPT4 > PHO2, 且三种水稻之间均有显著差异(P < 0.05)(图 3)。
![]() |
图 3 不同基因型水稻根际、非根际土壤无机磷总量 Figure 3 Inorganic phosphorus content in rhizospheric, non-rhizospheric soils among different rice varieties |
对土壤Al-P含量进行统计分析,结果显示,施磷条件下OsPT4和PHO2的根际土壤Al-P含量与Nipp无显著差异,而非根际土壤Al-P含量表现为OsPT4和PHO2显著低于Nipp(P < 0.05)(表 3)。不施磷条件下OsPT4和PHO2的根际和非根际土壤Al-P含量与Nipp均无显著差异(表 4)。
![]() |
![]() |
对土壤Fe-P含量研究发现,施磷条件下,同一水稻材料的根际、非根际土壤间无显著差异,不同基因型水稻间根际土壤Fe-P含量也无显著差异,而非根际土壤Fe-P含量表现为Nipp显著高于PHO2, PHO2显著高于OsPT4(P < 0.05)(表 3)。不施磷处理条件下,OsPT4和PHO2根际、非根际土壤Fe-P含量均显著低于Nipp(P < 0.05),同一水稻材料的根际和非根际土壤Fe-P含量不存在显著差异(表 4)。
2.4.3 土壤O-P含量对土壤O-P含量研究发现,施磷条件下Nipp和OsPT4的根际土壤O-P含量均显著高于PHO2(P < 0.05),Nipp的非根际土壤O-P含量显著高于PHO2,PHO2显著高于OsPT4(P < 0.05),同一水稻材料的根际、非根际土壤O-P含量无显著差异(表 3)。不施磷处理时,不同基因型水稻间根际土壤O-P含量无显著差异,Nipp的非根际土壤O-P含量显著高于Os-PT4, OsPT4显著高于PHO2(P < 0.05),同一水稻材料的根际、非根际土壤O-P含量无显著差异(表 4)。
2.4.4 土壤Ca-P含量从土壤Ca-P含量分析结果可以看出,施磷条件下,OsPT4和PHO2的根际土壤Ca-P含量显著低于Nipp(P < 0.05), 3种材料的非根际Ca-P无显著差异,3种水稻材料的根际土壤Ca-P含量均显著高于非根际土壤(P < 0.05)(表 3)。不施磷处理下,OsPT4和PHO2的根际土壤Ca-P含量显著高于Nipp(P < 0.05),3种水稻材料的非根际未出现显著差异,3种水稻材料的非根际土壤Ca-P含量显著高于根际土壤(P < 0.05)(表 4)。
3 讨论利用作物高效吸收、转运土壤磷素营养能力的分子机制来培育出磷高效吸收利用转基因作物新品种,已逐渐成为国内外研究的新领域[12]。一般情况下,根际、非根际土壤有效磷的含量由植物的吸收作用发生变化[13]。有研究发现,低磷胁迫下,磷高效甘蓝型油菜、大豆根际A1-P和Ca-P含量均显著低于磷低效型品种[14],同时也有研究发现,磷高效小麦在施磷量较少时根际土壤中Ca2-P浓度比非根际的高,而Ca8-P、Al-P、Fe-P和O-P含量则表现出相反的现象,这可能是由于根际作用将这4种组分转化成有效性较高的Ca2-P,且磷高效品种的这种转化能力显著强于磷低效的[5],说明磷高效基因型作物活化吸收土壤中无机磷各组分的能力较强。但赵康等[15]和郑加为等[16]等研究发现种植转基因玉米对土壤全磷和无机磷含量均无显著影响,金剑等[17]通过根箱试验也证实了两种不同基因型的大豆根际和非根际土壤全磷含量均无显著差异[18]。本研究发现OsPT4仅非根际土壤无机磷含量在施磷和不施磷条件下显著低于Nipp,而其根际土壤无机磷含量在施磷和不施磷条件下与Nipp无显著差异,这可能是磷高效转基因水稻在种植过程中活化和利用了根际土壤磷素[19],导致非根际土壤中磷素不断向根际扩散[20],从而使其非根际土壤磷素含量发生变化。
本研究发现,两种供磷条件下,3种水稻材料的根际、非根际土壤无机磷组分含量均表现为O-P > Fe-P > Al-P > Ca-P,这与试验前土壤中无机磷各组分的关系一致,且与洪继旺等[21]和黄志刚等[22]的研究结果一致,说明磷高效转基因水稻的种植短期内并没有改变土壤中无机磷各组分的关系。
Fe-P在红壤中有效性最高,其含量所占红壤无机磷比率较大[23],本文对土壤Fe-P含量研究发现,在施磷处理条件下,磷高效水稻材料OsPT4和PHO2的根际土壤Fe-P含量与Nipp没有显著差异,徐静等[3]也证明了这一现象,其发现磷高效基因型大麦在施磷条件下根际土壤Fe-P含量与低效基因型品种无显著差异,同时也有研究指出,施磷处理时,磷高效小麦CD1158-7根际土壤Fe-P含量与磷低效型小麦无显著差异1由此可以说明磷高效转基因水稻的种植短期内不会对根际土壤Fe-P含量造成影响。与Fe-P的功能相似,A1-P作为土壤无机磷的重要组分,虽然在红壤中含量较少,但却是红壤中有效磷的重要来源[24],张锡洲等[5]研究指出低磷条件下,磷高效小麦非根际土壤A1-P含量显著低于磷低效型小麦,本研究也发现,施磷处理时OsPT4和PHO2仅非根际土壤A1-P含量显著低于Nipp,徐静等[3]也发现这一现象,其研究发现磷高效大麦的非根际A1-P含量显著低于磷低效品种,这说明了在施人磷肥条件下磷高效转基因水稻根系对A1-P活化吸收的能力要比常规品种强,促进其非根际土壤中的无机磷向根际扩散[25]。
O-P作为土壤的贮备磷源,在红壤中含量最高[24],展晓莹等[26]也发现不同磷效率小麦的根际土壤O-P无显著差异,本文对土壤O-P含量研究发现,在施磷和不施磷条件下,OsPT4的根际土壤O-P含量与Nipp也无显著差异,而本研究对非根际土壤O-P含量研究发现,OsPT4和PHO2在施磷和不施磷条件下显著低于Nipp, 这与张锡洲等[5]的研究结果一致,其发现施磷和不施磷处理下,高效型小麦CD1158-7的非根际土壤O-P含量低于低效型。Ca-P作为植株体内重要的潜在磷源,其含量在红壤中只占无机磷很小的份额[24],蔡秋燕等[27]发现,磷高效基因型野生大麦土壤Ca-P的含量仅在无机磷缺乏时比常规品种高,本研究也发现,OsPT4和PHO2在不施磷条件下根际土壤Ca-P含量显著高于Nipp, 说明磷高效转基因水稻在磷肥缺乏的情况下对Ca-P的吸收能力较低,而非根际土壤Ca-P含量在施磷和不施磷条件下与Nipp无显著差异,这与展晓莹等[26]研究结果一致,其研究发现不同磷效率小麦的非根际土壤Ca-P含量在施磷和不施磷处理下与常规品种无差异。
目前国内外针对转基因作物生态安全的研究主要集中在土壤微生物种类及群落组成[28-31],而对土壤养分影响的研究主要是有关转Bt基因作物对土壤养分和酶活性的影响[32-33],有关养分高效利用转基因作物种植对土壤生态系统是否存在长期影响还没有定论。由于本研究只是在根盒试验下研究磷高效转基因水稻OsPT4种植对土壤无机磷组分的影响,未能对其进行长期的野外试验。因此,要综合评价磷高效转基因水稻OsPT4的种植对土壤无机磷组成的影响仍需通过长期田间试验进一步研究。
4 结论(1) 施磷条件下,3种水稻材料的根际土壤无机磷总量无显著差异,OsPT4和PHO2的非根际无机磷总量显著低于Nipp,不施磷条件下,OsPT4根际土壤无机磷总量与Nipp无显著差异,而非根际土壤无机磷总量显著低于Nipp, PHO2的根际和非根际土壤无机磷总量均显著低于Nipp。
(2) 两种供磷处理条件下,3种水稻材料的根际和非根际土壤无机磷组分浓度均表现为O-P > Fe-P > Al-P > Ca-P。在供磷条件下,磷高效转基因水稻对A1-P、O-P和Ca-P的吸收活化能力较强,而缺磷条件下,磷高效转基因水稻可促进其根系对Fe-P的吸收利用。
[1] | Ma X Q, Liang X. Research advances in mechanism of high phosphorus use efficiency of plants[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 712–716. |
[2] | 尹金来. 早作和水作条件下土壤磷素转化及有效性研究[D]. 南京: 南京农业大学, 2001. YIN Jin-lai. Transformation and availability soil phosphorus under upland and waterlogged condition[D]. Nanjing:Nanjing Agricultural University, 2001. (in Chinese) |
[3] |
徐静, 张锡洲, 李廷轩, 等.
磷高效利用野生大麦基因型筛选及其根际土壤无机磷组分特征[J]. 应用生态学报, 2013, 24(10): 2821–2830.
XU Jing, ZHANG Xi-zhou, LI Tai-xuan, et al. Screening of wild barley genotypes with high phosphorus use efficiency and their rhizosphere soil inorganic phosphorus fractions[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2821–2830. (in Chinese) |
[4] | 蔡秋燕. 磷高效野生大麦有机磷吸收利用特征研究[D]. 成都: 四川农业大学, 2015. CAI Qiu-yan. Uptake and utilization characteristics of organic phosphorus in phosphorus efficiency of wild barley[D]. Chengdu:Sichuan Agricultural University, 2015. (in Chinese) |
[5] |
张锡洲, 阳显斌, 李廷轩, 等.
不同磷效率小麦对磷的吸收及根际土壤磷组分特征差异[J]. 中国农业科学, 2012, 45(15): 3083–3092.
ZHANG Xi-zhou, YANG Xian-bin, LI Ting-xuan, et al. Characteristics of the phosphorus fractions in the rhizosphere among different phosphorus efficiency wheat cultivars[J]. Scientia Agricultura Sinica, 2012, 45(15): 3083–3092. (in Chinese) |
[6] | 臧怀敏. 磷高效转基因水稻对土壤无机磷组成及土壤细菌多样性的影响[D]. 北京: 中国农业科学院, 2016. ZANG Huai-min. Effects of phosphorus efficient transgenic rice on compositions of inorganic phosphorus and soil bacterial diversity[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016. (in Chinese) |
[7] | 吴娜. 水稻磷转运蛋白OsPT4的生理功能鉴定[D]. 南京: 南京农业大学, 2011. WU Na. Physilogical functional identification of rice phosphate transporter OsPT4[D]. Nanjing:Nanjing Agricultural University, 2011. (in Chinese) |
[8] | Kyaw A, Shu I L, Wu Chia-Chune, et al. PHO2, a phosphate overaccumulator, iscaused by a nonsense mutation in a microRNA399 Target Gene[J]. Plant Physiology, 2006, 141: 1000–1011. DOI:10.1104/pp.106.078063 |
[9] | Zhang H W, Huang Y, Ye X S, et al. Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress[J]. Plant and Soil, 2009, 320: 91–102. DOI:10.1007/s11104-008-9873-0 |
[10] |
鲁如坤.
土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU Ru-kun. Analysis of soil agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese) |
[11] | Jiang B F, Gu Y C. Methods of determination of inorganic phosphorusfractionation in calcareous soil[J]. Soils, 1990, 22(2): 101–103. |
[12] | 薛亚光. 水稻高产与养分高效利用栽培技术及其生理基础的研究[D]. 扬州: 扬州大学, 2013. XUE Ya-guang. Cultivation techniques for high-yielding and high nutrient use efficiency in rice and their physiological bases[D]. Yangzhou:Yangzhou University, 2013. (in Chinese) |
[13] |
贺永华, 沈东升, 朱荫湄.
根系分泌物及其根际效应[J]. 科技通报, 2006, 22(6): 761–766.
HE Yong-hua, SHEN Dong-sheng, ZHU Yin-mei. Root exudates and their rhizospheric effects[J]. Bulietin of Science and Technology, 2006, 22(6): 761–766. (in Chinese) |
[14] |
梁宏玲, 石磊, 徐芳森, 等.
甘蓝型油菜不同磷效率基因型对土壤难溶性磷吸收利用的差异[J]. 中国油料作物学报, 2007, 29(3): 297–301.
LIANG Hong-ling, SHI Lei, XU Fang-sen, et al. The difference in uptake and utilization of soil insoluble phosphorous for various P efficient genotypes in Brassica napus[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(3): 297–301. (in Chinese) |
[15] |
赵康, 杨正友, 孙红炜, 等.
转植酸酶基因(PhyA2) 玉米的种植及秸秆还田对土壤氮磷钾含量的影响[J]. 山东农业科学, 2014, 46(4): 69–71.
ZHAO Kang, YANG Zheng-you, SUN Hong-wei, et al. Effects of cultivation and straw returning of transgenic maize with phytasegene(PhyA2) on NPK contents in soil[J]. Shandong Agricultural Sciences, 2014, 46(4): 69–71. (in Chinese) |
[16] |
郑加为, 陈法军, 刘满强, 等.
转植酸酶玉米大田种植对根际土壤磷含量及组成的影响[J]. 土壤学报, 2014, 51(5): 1111–1116.
ZHENG Jia-wei, CHEN Fa-jun, LIU Man-qiang, et al. Effects of phtase transgenic corn on content and composition of phosphorus in rhizosphere soil under field comditions[J]. Acta Pedologica Sinica, 2014, 51(5): 1111–1116. (in Chinese) |
[17] |
金剑, 王光华, 刘晓冰, 等.
利用根箱法解析大豆苗期氮磷吸收及其在根际分布的特征[J]. 大豆科学, 2005, 24(4): 281–285.
JIN Jian, WANG Guang-hua, LIU Xiao-bing, et al. Comparison on the plant type and yield of soybean varieties from close latitude of China and America[J]. Soybean Science, 2005, 24(4): 281–285. (in Chinese) |
[18] |
曾萍, 冯远娇, 张婉纯, 等.
种植Bt玉米及秸秆还田后土壤中Bt蛋白的变化及其对土壤养分的影响[J]. 应用生态学报, 2014, 25(7): 1997–2003.
ZENG Ping, FENG Yuan-jiao, ZHANG Wan-chun, et al. Change of Bt protein in soil after growing Bt corns and returning corn straws to soil and its effects on soil nutrients[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 1997–2003. (in Chinese) |
[19] | Nuruzzaman M, Lambers H, Bolland M D A, et al. Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes[J]. Plant and Soil, 2006, 2(281): 109–120. |
[20] |
张鼎华, 林开森, 李宝福.
杉木、马尾松及其混交林根际土壤磷素特征[J]. 应用生态学报, 2011, 22(11): 2815–2821.
ZHANG Ding-hua, LIN Kai-sen, LI Bao-fu. Phosphorus characteristics in rhizosphere soil of Cunninghamial anceolata, Pinus massoniana and their mixed plantations[J]. Chinese Journal of Applied Ecology, 2011, 22(11): 2815–2821. (in Chinese) |
[21] |
洪继旺, 线琳, 黄冬芬, 等.
施用不同豆科绿肥对酸性土壤无机磷分级的动态影响[J]. 热带作物学报, 2014, 35(8): 1475–1480.
HONG Ji-wang, XIAN Lin, HUANG Dong-fen, et al. The dynamic effect of different leguminous green manures application on the acid soil inorganic phosphorus fractions[J]. Chinese Journal of Tropical Crops, 2014, 35(8): 1475–1480. (in Chinese) |
[22] | 黄志刚. 赤红壤上作物根际的磷素化学动态及生物有效性[D]. 南宁: 广西大学, 2001. HUANG Zhi-gang. Chemical dynamic and bioavailability of phosphorus of crop's rhizosphere in crimson soil[D]. Nanning:Guangxi University, 2001. (in Chinese) |
[23] |
向万胜, 黄敏, 李学垣.
土壤磷素的化学组分及其植物有效性[J]. 植物营养与肥料学报, 2004, 10(6): 663–670.
XIANG Wan-sheng, HUANG Min, LI Xue-yuan. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil[J]. Plant Nutrition and Fertilizer Science, 2004, 10(6): 663–670. DOI:10.11674/zwyf.2004.0621 (in Chinese) |
[24] | 杜佳佳. 土壤磷素分级及植物有效性研究[D]. 南京: 南京林业大学, 2008. DU Jia-jia. The effect of soil phosphorus fractionation and plant effectiveness[D]. Nanjing:Nanjing Forestry University, 2008. (in Chinese) |
[25] |
汪海珍, 徐建民, 谢正苗.
转基因作物在土壤环境中的残留及其对土壤生物的影响[J]. 土壤, 2005, 37(4): 370–374.
WANG Hai-zhen, XU Jian-min, XIE Zheng-miao. Residues of transgenic plants in soil and impact on soil organisms[J]. Soils, 2005, 37(4): 370–374. (in Chinese) |
[26] |
展晓莹, 张丽, 刘晓斌, 等.
高磷条件下不同磷效率小麦对磷的吸收及根际土壤磷组分差异[J]. 核农学报, 2013, 27(11): 1762–1770.
ZHAN Xiao-ying, ZHANG Li, LIU Xiao-bin, et al. Phosphorus accumulation and phosphorus fraction in high phosphorus soil of two different P-efficiency wheat genotypes[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(11): 1762–1770. DOI:10.11869/hnxb.2013.11.1762 (in Chinese) |
[27] |
蔡秋燕, 张锡洲, 李廷轩, 等.
不同磷源对磷高效利用野生大麦根际土壤磷组分的影响[J]. 应用生态学报, 2014, 25(11): 3207–3214.
CAI Qiu-yan, ZHANG Xi-zhou, LI Ting-xuan, et al. Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3207–3214. (in Chinese) |
[28] | Oliveira A P, Pampulha M E, Bennett J P. A two-year field study with transgenic Bacillus thuringiensis maize:Effects on soil microorganisms[J]. Science of the Total Environment, 2008, 405(1/3): 351–357. |
[29] | FANG Min, Motavalli P P, Kremer R J, et al. Assessing changes in soil microbial communities and carbon mineralization in Bt and non-Bt corn residue-amended soils[J]. Applied Soil Ecology, 2007, 37(1-2): 150–160. DOI:10.1016/j.apsoil.2007.06.001 |
[30] | George T S, Richardson A E, Li S S, et al. Extracellular release of a heterologous phytase from roots of transgenic plants:Does manipulation of rhizosphere biochemistry impact microbial community structure[J]. FEMS Microbiology Ecology, 2009, 70(3): 433–445. DOI:10.1111/fem.2009.70.issue-3 |
[31] |
邹雨坤, 张静妮, 杨殿林, 等.
转Bt基因玉米对根际土壤细菌群落结构的影响[J]. 生态学报, 2011, 30(1): 98–105.
ZOU Yu-kun, ZHANG Jing-ni, YANG Dian-lin, et al. Effects of transgenic Bt maize on bacterial community structure in rhizosphere soil[J]. Chinese Journal of Ecology, 2011, 30(1): 98–105. (in Chinese) |
[32] |
王建武, 冯远娇, 骆世明.
种植Bt玉米秸秆分解对土壤酶活性和土壤肥力的影响[J]. 应用生态学报, 2005, 16(3): 524–528.
WANG Jian-wu, FENG Yuan-jiao, LUO Shi-ming. Effects of Bt corn straw decomposition on soil enzyme activities and soil fertility[J]. Journal of Applied Ecology, 2005, 16(3): 524–528. (in Chinese) |
[33] |
孙彩霞, 张玉兰, 缪璐, 等.
转Bt基因作物种植对土壤养分含量的影响[J]. 应用生态学报, 2006, 17(5): 943–946.
SUN Cai-xia, ZHANG Yu-lan, MIAO Lu, et al. Changes of nutrients in soil of transgenic Bt crops[J]. Journal of Applied Ecology, 2006, 17(5): 943–946. (in Chinese) |