文章信息
- 江宏, 马友华, 尹国庆, 王强, 聂静茹, 马铁铮, 胡宏祥
- JIANG Hong, MA You-hua, YIN Guo-qing, WANG Qiang, NIE Jing-ru, MA Tie-zheng, HU Hong-xiang
- 安徽省某县农田土壤重金属污染及潜在生态风险评价
- Evaluation on Heavy Metal Pollution and Potential Ecological Risk of Farmland Soils in a County of Anhui Province, China
- 农业资源与环境学报, 2017, 34(4): 352-359
- Journal of Agricultural Resources and Environment, 2017, 34(4): 352-359
- http://dx.doi.org/10.13254/j.jare.2016.0302
-
文章历史
- 收稿日期: 2016-12-12
近年来,随着工业、农业以及城镇化的不断发展,我国的生态环境受到了严重的污染和破坏,土壤作为生态圈的重要组成部分,自然也受到了很大程度的破坏和污染,尤其是土壤重金属污染问题,已经成为国内外环境科学研究的主要问题之一[1-5]。土壤是人类赖以生存和可持续发展的基础,是地理环境的重要组成要素,不仅是农业生产的基础,而且还提供人类生存所需的各种营养物质,是人类环境的重要组成部分,土壤,特别是农田土壤重金属的污染不仅对农作物的质量和产量有一定影响,更会通过食物链、经口摄入以及呼吸和皮肤接触进入人体[6-7],从而影响人类身体健康,严重的可能会造成不可逆转的伤害。2014年我国环保部和国土资源部联合发布的最新土壤污染状况调查公报显示,全国土壤环境状况总体不容乐观,耕地土壤点位超标率为19.4%。我国农田土壤Cd富集严重,其次是Pb;从区域来看西南部地区重金属含量较高,其次为两广和辽宁地区[8]。
农田土壤重金属污染具有高毒性、潜伏性、难迁移、易累积等诸多不利于环境质量和人类健康的性质,所以评价其污染程度、摸清其风险指数对生态健康和生命安全都具有重大意义。现阶段国内外对于土壤重金属污染的研究多集中于对工厂矿区、污水灌溉区域或城市的土壤重金属污染进行分析评价[9-22],对县域农田土壤重金属的分析评价还相对较少。研究区地处长江中下游地段,一直以来都有有关该县域沿江区域蔬菜重金属超标的报道。本文选择该区的农田土壤,对其5种主要重金属含量进行分析,研究重金属在农田土壤中的相关性、聚类性和变异性,并结合GIS中地统计分析工具进行插值分析,旨在研究重金属在农田土壤中的空间分布特征,确定重金属的潜在生态风险指数,从而为该地区农产品产地建设以及土壤污染防治提供科学依据。
1 材料与方法1 研究区域概况研究区域位于安徽省南部,北临长江,农田面积约31 000 hm2。土壤以红壤、黄棕壤、潮土、水稻土等为主。区域内矿产资源丰富,品种繁多,分布面广,采冶历史悠久,全区已发现各类矿产30种(含亚矿种),矿山企业175家。主要矿产为煤矿、铁矿、金矿、铅矿等。
1 样品采集与处理根据历史经验和全区的工矿企业分布,首先确定疑似受工矿企业或污水灌溉影响的区域,在此区域密集布点,每10 hm2采集1份土壤样品;在不受影响的农田均匀布点,每133~1 333 hm2采集1份土壤样品,同时确保覆盖每个乡镇及主要种植作物和土壤类型,采样深度为0~20 cm,用GPS定位仪记录各采样点的经纬度,采用梅花形采样法,分样点不少于5个,采用四分法取舍,最终采集土样199份(图 1),分别制成50 g样品。
![]() |
图 1 研究区农田土壤重金属采样点位分布图 Figure 1 Location of soil sample collection sites in the study area |
样品采用硝酸-高氯酸-氢氟酸消解后,Cd、Pb、Cr采用原子吸收法(NY/T 1613—2008)测定,As、Hg采用原子荧光法(GB/T 22105—2008)测定。同时,样品在测试过程中通过平行双样分析,空白样品分析、加标样分析等方式进行全程质量控制。
1 数据分析与统计土壤重金属含量的描述性统计及相关分析运用Excel和SPSS 20.0完成,探索性数据分析和空间克里格插值采用ArcGIS 9.3的Geostatistical Analyst模块进行分析。
1.5 评价方法及标准1.5.1 地积累指数法地积累指数法是利用某一种重金属的含量与其地球化学背景值的关系来确定重金属污染程度的定量指标。由德国学者穆勒(Muller)于1969年提出,并被广泛应用于对沉积物中重金属污染的评价。评价重金属的污染,除必须考虑到人为污染因素、环境地球化学背景值外,还应考虑到由于自然成岩作用可能会引起背景值变动的因素,地累积指数法注意到了此因素,弥补了其他评价方法的不足。其计算公式如下:
![]() |
式中:Ci是重金属元素的实测值,mg·kg-1;Bi是该重金属元素的地球化学背景值,mg·kg-1;常数k是修正指数,即考虑到造岩运动可能引起的背景值变动,通常用来表征沉积特征、岩石地质等其他影响,此处取1.5[23-25]。地累积指数的分级标准与污染程度的划分见表 1[26]。
潜在生态风险指数法是瑞典科学家Hakanson于1980年提出[27],该方法利用沉积物中重金属相对于工业化以前沉积物的最高背景值的比值及重金属的生物毒性系数进行加权求和得到生态危害指数,是目前较多学者采用的方法[28-33]。应用潜在生态风险指数法评价土壤重金属污染的潜在风险,是目前国际土壤重金属研究广泛使用的方法之一,其不但把重金属的含量考虑在内,并将重金属的生态效应、环境效应和毒理学效应联系起来,定量地划分出重金属的潜在风险程度。其计算公式如下:
![]() |
式中:RI为重金属综合污染潜在生态风险指数;Eri为单项重金属污染潜在生态危害系数;Tri为Hakanson制定的标准化重金属毒性响应系数,此值反映了该种重金属的毒性水平,上述5种重金属的毒性系数分别为:Hg=40>Cd=30>As=10>Pb=5>Cr=2[27, 34];Cfi为单项重金属的污染系数;Csi为土壤中重金属i的实测浓度(mg·kg-1);Cni为重金属i的参比值(mg·kg-1)。污染评价等级划分标准见表 2。
研究区农田土壤199个样点5种重金属含量的描述性统计结果见表 3。同时采用研究区域背景值[35]和土壤环境质量二级标准(GB 15618—1995)作对比分析。
![]() |
表 3显示,研究区Cd、Pb、Cr、As和Hg 5种重金属的平均含量分别为0.302、61.17、87.13、12.89 mg·kg-1和0.139 mg·kg-1,全部高于研究区土壤重金属平均背景值,表明各元素在表层土壤中均存在富集,其中Cd、Pb和Hg高于背景值3倍以上。5种重金属元素超过背景值的比例均超过50%,分别为Cd=97.99%>Pb=95.98%>Hg=94.47%>Cr=74.84%>As=57.79%。
5种元素中只有Cd的均值略微超过土壤环境质量二级标准,其他元素均未超出,但所有元素都有点位超标,超标率分别为Cd=41.71%>As=Hg=4.52%>Pb=1.51%>Cr=0.50%。
两种标准的超标率排序略有不同的主要原因是二级标准中Pb和Cr的值比研究取得背景值要高出9.7倍和3.6倍。这种差异性在孟飞等[36]研究的上海农田土壤重金属含量特征中也出现过。
5种元素的变异系数从大到小分别是Hg>Pb>As>Cr>Cd,且变异系数都超过50%,其中Hg和Pb的变异系数大于100%,属中高等强度变异,说明5种元素在空间上的分布差异较大,积累受外界因素干扰较大,Hg和Pb更甚。
2.2 地累积指数法评价由表 4污染地积累指数计算结果及图 2可知,5种元素在研究区都有一定程度的积累,其中Pb、Cr、As的大部分样点都处于轻度和偏中度的程度,相比之下Cd、Hg的积累情况就要严重得多,其样点大部分都处于中度到严重积累的程度。可以看出,研究区域土壤各种重金属元素出现污染的点位占比分别为,Cd:85.43%、Hg:76.38%、Pb:59.30%、As:26.63%以及Cr:19.60%。污染程度由强到弱依次为Cd>Hg>Pb>As>Cr。各元素出现污染的大部分点位都处于轻度和偏中度积累,只有Hg和Pb的1~2个点位出现了偏重甚至严重积累的情况。由图 2还可以看出Cd和Hg在研究区域的大部积累较多,Cd还在东部和沿江部分有更高的积累;Pb和As在研究区东部积累程度较高;Cr在研究区中部有一个极高值;而Hg在全区大部都有较高积累。
![]() |
![]() |
图 2 研究区域农田土壤重金属地积累指数等级图 Figure 2 Grades of heavy metals geoaccumulation index of farmland soils in the study area |
表 5为研究区域土壤重金属元素的潜在生态风险指数和潜在危害综合指数统计表;表 6为样点分布频数表;图 3为研究区域农田土壤各单因子潜在生态风险等级图;图 4为研究区域农田土壤综合生态风险等级图。从单因子潜在生态风险指数可以看出,研究区域5种重金属平均风险指数由大到小的排列顺序为Hg>Cd>As>Pb>Cr,其中Hg和Cd的平均风险指数分别为135.53和87.19,处于强生态危害程度,对研究区域的土壤潜在生态风险贡献高;其余3项都处于轻微危害程度,对研究区域的土壤潜在生态风险贡献较低。从频数上来看,Hg和Cd的大部分采样点处于中等或强的生态危害状态,还有部分点位呈现很强或极强的状态;Cr的全部点位以及Pb、As的大部分点位都处于轻微生态危害等级。由图 3也可看出,研究区的Cd和Hg有大部都处于强风险以上的等级,而Pb、Cr和As的大部分都属于轻微风险等级。这表明Hg和Cd是研究区域土壤潜在生态风险的主导因子,一半以上的生态危害都是由这两种元素造成。
![]() |
![]() |
![]() |
图 3 研究区域农田土壤重金属单因子潜在生态风险等级图 Figure 3 Grades of farmland soils heavy metals potential ecological risk of each factors in the study area |
![]() |
图 4 研究区域农田土壤重金属综合生态风险等级图 Figure 4 Grades of farmland soils heavy metals comprehensive ecological risk in the study area |
研究区域的综合污染潜在生态风险指数处在83.83~6 987.87之间,平均值为250.76,属中等危害程度。从不同潜在生态风险等级频数来看,86.43%的样点都处在轻微或中等的生态危害程度;有13.57%的样点是处于强风险程度或以上的状态。由图 4也可看出研究区域的大部分地区的综合潜在生态风险等级处于中等等级,中东部以及北部部分地区属于强及以上的等级。这表明研究区域的土壤环境状况总体乐观,但部分地区已经存在较为严重的潜在生态风险,应引起相关部门的充分重视。
3 讨论选用土壤元素背景值和土壤环境质量二级标准作为依据,所得出的结果会有不同,采用当地土壤背景值法进行判断时得出的结论重金属污染最为严重[37]。研究区农田土壤的重金属污染的状况也是如此,5种元素超出背景值的点位数远超过超出土壤环境二级标准的点位数。
而用地积累指数法与潜在生态风险指数法对土壤重金属进行评价得出的结果也会有一定的差异,主要体现在各元素污染程度的排序上,这主要是因为在进行潜在生态风险评价时还需要考虑重金属元素毒性系数的影响。虽然Cd的积累程度比Hg要高,但是其毒性系数(30)小于Hg的毒性系数(40),所以Cd的潜在生态风险小于Hg,同理As也具有较高的毒性系数,所以其生态风险也随之上升。地积累指数法侧重于重金属含量与背景值的对比评价,主要反映外源重金属的富集程度,而Hakanson生态风险指数法除考虑重金属含量之外,还侧重考虑了不同元素对生物的毒性影响,并通过加权求和突出了多元素污染风险的协同效应,这为决策者从作物安全角度理解重金属污染,进行科学决策提供了更丰富的信息[32, 38-40]。
引起重金属元素积累的原因是多方面的,主要与人类活动有关,如燃煤烟尘、汽车轮船的尾气和轮胎磨损、工业粉尘、金属腐蚀等[41-42]。通过实地走访调查,得知研究区内有很多硫铁矿、金矿矿区及工矿企业,而高积累的点位基本分布在矿区周边,初步估计研究区中重金属元素的积累与工矿企业有密切关系;北部沿江区域出现的高积累区域与研究区的主城区重合,初步估计与城市垃圾集中堆放以及城市排污有关。
4 结论(1)研究区域农田土壤中Cd、Pb、Cr、As和Hg 5种主要重金属元素含量范围分别是:0.073~1.234、23.23~813.54、31.84~746.70、3.68~86.47 mg·kg-1以及0.027~6.687 mg·kg-1。平均值分别为0.302、61.17、87.13、12.89 mg·kg-1以及0.139 mg·kg-1。相较于《土壤环境质量标准》的二级标准只有Cd的平均值略为超标;相较于当地土壤元素背景值则全部元素都超出范围。5种元素的变异系数均超过50%,说明各个元素的积累都不同程度受到外界因素的影响,特别是Hg和Pb的变异系数超过100%,表明这两种元素在研究区域农田土壤中的积累很大程度上受外界人为因素的影响。
(2)5种元素中,Cd和Hg的点位污染比例比较高,分别达到85.43%和76.38%,Pb、As和Cr的大部分点位都处在清洁或轻度积累的程度,点位污染比例分别为59.30%、26.63%和19.60%。其中Hg和Pb的极少数点位出现了偏重或严重积累的情况。
(3)研究区域农田土壤中Cd、Pb、Cr、As和Hg 5种主要重金属元素的平均单因子潜在生态风险指数分别为87.19、11.81、2.51、13.71以及135.53。Hg和Cd处于强生态危害程度,对研究区域的土壤潜在生态风险贡献高;研究区域综合污染潜在生态风险指数处在83.83~6 987.87之间,平均值为250.76。大部分点位都处于轻微或中等风险等级,有13.57%的点位处于强或以上风险,应该引起相关部门的重视。
[1] | Lv J S, Liu Y, Zhang Z L, et al. Factorial kriging and stepwise regression approach to identify environmental factor influencing spatial multi-scale variability of heavy metals in soils[J]. Journal of Hazardous Materials, 2013, 261: 387–397. DOI:10.1016/j.jhazmat.2013.07.065 |
[2] | 谭灵芝, 朱怀松, 王国友. 乌鲁木齐地区土壤重金属污染空间分布及污染预警研究[J]. 环境科学学报, 2012, 32(10): 2509–2523. TAN Ling-zhi, ZHU Huai-song, WANG Guo-you. Spatial distribution and early warning of heavy metal pollution in Urumqi[J]. Acta Scientiae Circumstantiae, 2012, 32(10): 2509–2523. (in Chinese) |
[3] | ZHU Hui-na, YUAN Xing-zhong, ZENG Guang-ming, et al. Ecologial risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1470–1477. DOI:10.1016/S1003-6326(11)61343-5 |
[4] | 宋珍霞, 高明, 王里奥, 等. 三峡库区农业土壤重金属含量特征及污染评价——以Cu Pb和Zn为例[J]. 农业环境科学学报, 2008, 27(6): 2189–2194. Song Z X, Gao M, Wang L A, et al. Heavy metal concentrations in agricultural soils of the Three-Gorge Reservoir area and their pollution evaluation:Taking Cu, Pb, and Zn as examples[J]. Journal of Agro-environment Science, 2008, 27(6): 2189–2194. (in Chinese) |
[5] | Tanmoy K. Heavy metal accumulation in soil amended with roadside pond sediment and uptake by rice[J]. Communications in Soil Science and Plant Analysis, 2010, 41: 2577–2594. DOI:10.1080/00103624.2010.514376 |
[6] | Giaccio L, Cicchella D, De Vivo B, et al. Does heavy metals pollution affects semen quality in men? A case of study in the metropolitan area of Naples(Italy)[J]. Journal of Geochemical Exploration, 2012, 112: 218–225. DOI:10.1016/j.gexplo.2011.08.009 |
[7] | Olawoyin R, Oyewole S A, Grayson R L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta[J]. Ecotoxicology and Environmental Safety, 2012, 85: 120–130. DOI:10.1016/j.ecoenv.2012.08.004 |
[8] | 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692–703. ZHANG Xiao-min, ZHANG Xiu-ying, ZHONG Tai-yang, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environmental Science, 2014, 35(2): 692–703. (in Chinese) |
[9] | 马婷, 赵大勇, 曾巾, 等. 南京主要湖泊表层沉积物中重金属污染潜在生态风险评价[J]. 生态与农村环境学报, 2011, 24(6): 37–42. MA Ting, ZHAO Da-yong, ZENG Jin, et al. Potential ecological risk assessment of heavy metal pollutants in surface sediments of the lakes in Nanjing[J]. Journal of Ecology and Rural Environment, 2011, 24(6): 37–42. (in Chinese) |
[10] | 易秀, 谷晓静, 侯燕卿, 等. 陕西省泾惠渠灌区土壤重金属污染潜在生态风险评价[J]. 干旱地区农业研究, 2010, 28(6): 217–221. YI Xiu, GU Xiao-jing, HOU Yan-qing, et al. Risk assessment of agricultural drought in three provinces of southeastern coast of China based on information diffusion theory[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 217–221. (in Chinese) |
[11] | 王晓芳, 罗立强. 铅锌银矿区蔬菜中重金属吸收特征及分布规律[J]. 生态环境学报, 2009, 18(1): 143–148. WANG Xiao-fang, LUO Li-qiang. Uptake of heavy metal in vegetables grown in Pb-Zn-Ag mine, Nanjing[J]. Ecology and Environmental Sciences, 2009, 18(1): 143–148. (in Chinese) |
[12] | 樊文华, 白中科, 李慧峰, 等. 复垦土壤重金属污染潜在生态风险评价[J]. 农业工程学报, 2011, 27(1): 348–354. FAN Wen-hua, BAI Zhong-ke, LI Hui-feng, et al. Potential ecological risk assessment of heavy metals in reclaimed soils[J]. Transactions of the CSAE, 2011, 27(1): 348–354. (in Chinese) |
[13] | 陈孝杨, 刘鑫尧, 严家平. 煤矸充填复垦土壤可溶性镉的分布特征与运移模拟[J]. 农业环境科学学报, 2012, 31(9): 1734–1738. CHEN Xiao-yang, LIU Xin-rao, YAN Jia-ping. Distribution and transportion of soluble cadmium in the reclaimed soil filled with coal wastes[J]. Journal of Agro-Environment Science, 2012, 31(9): 1734–1738. (in Chinese) |
[14] | 黄兴星, 朱先芳, 唐磊, 等. 密云水库上游某铁矿区土壤重金属含量及形态研究[J]. 中国环境科学, 2012, 32(9): 1632–1639. HUANG Xing-xing, ZHU Xian-fang, TANG Lei, et al. Studies on the distribution and chemical speciation of heavy metals in an iron mine soil of the upstream area of Miyun Reservoir, Beijing[J]. China Environmental Science, 2012, 32(9): 1632–1639. (in Chinese) |
[15] | 李如忠, 潘成荣, 陈婧, 等. 铜陵市区表土与灰尘重金属污染健康风险评估[J]. 中国环境科学, 2012, 32(12): 2261–2270. LI Ru-zhong, PAN Cheng-rong, CHEN Jing, et al. Heavy metal contamination and health risk assessment for urban topsoil and dust in Tongling City[J]. China Environmental Science, 2012, 32(12): 2261–2270. DOI:10.3969/j.issn.1000-6923.2012.12.022(in Chinese) |
[16] | Surdyk N, Cary L, Blagojevic S, et al. Impact of irrigation with treated low quality water on the heavy metal contents of a soil-crop system in Serbia[J]. Agricultural Water Management, 2010, 98(3): 451–457. DOI:10.1016/j.agwat.2010.10.009 |
[17] | Chung B Y, Song C H, Park B J, et al. Heavy metals in brown rice(Oryza sativa L.) and after long-term irrigation of wastewater discharged from domestic sewage treatment plants[J]. Pedosphere, 2011, 21(5): 621–627. DOI:10.1016/S1002-0160(11)60164-1 |
[18] | 王莹, 陈玉成, 李章平. 我国城市土壤重金属的污染格局分析[J]. 环境化学, 2012, 31(6): 763–770. WANG Ying, CHEN Yu-cheng, LI Zhang-ping. Contamination pattern of heavy metals in Chinese urban soils[J]. Environmental Chemistry, 2012, 31(6): 763–770. (in Chinese) |
[19] | 樊新刚, 米文宝, 马振宁, 等. 宁夏石嘴山河滨工业园区表层土壤重金属污染的时空特征[J]. 环境科学, 2013, 34(5): 1887–1894. FAN Xin-gang, MI Wen-bao, MA Zhen-ning, et al. Spatial and temporal characteristics of heavy metal concentration of surface soil in Hebin industrial park in Shizuishan northwest China[J]. Environmental Science, 2013, 34(5): 1887–1894. (in Chinese) |
[20] | Hu Y A, Liu X P, Bai J M, et al. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization[J]. Environmental Science and Pollution Research, 2013, 20(9): 6150–6159. DOI:10.1007/s11356-013-1668-z |
[21] | Al Obaidy A H M, Al Mashhadi A A. Heavy metal contaminations in urban soil within Baghdad City, Iraq[J]. Journal of Environmental Protection, 2013, 4(1): 72–82. DOI:10.4236/jep.2013.41008 |
[22] | Salah E, Turki A, Noori S. Heavy metals contentration in urban soils of Fallujah City, Iraq[J]. Journal of Environmental and Earth Science, 2013, 3(11): 100–113. |
[23] | 周秀艳, 王恩德. 辽东湾潮间带底质重金属污染地累积指数评价[J]. 安全与环境学报, 2004, 4(2): 22–24. ZHOU Xiu-yan, WANG En-de. Method on how to apply index of geoaccumulation to evaluate heavy metal pollution as result of inter-tidal sediments in Liaodong bay[J]. Journal of Safety and Environment, 2004, 4(2): 22–24. (in Chinese) |
[24] | 涂剑成, 赵庆良, 杨倩倩. 东北地区城市污水处理厂污泥中重金属的形态分布及其潜在生态风险评价[J]. 环境科学学报, 2012, 33(3): 689–695. TU Jian-cheng, ZHAO Qing-liang, YANG Qian-qian. Fractional distribution and assessment of potential ecological risk of heavy metals in municipal sludges from wastewater treatment plants in Northeast China[J]. Acta Scientiae Circumstantiae, 2012, 33(3): 689–695. (in Chinese) |
[25] | 张江华, 赵阿宁, 王仲复, 等. 内梅罗指数和地质累积指数在土壤重金属评价中的差异探讨——以小秦岭金矿带为例[J]. 黄金, 2010, 8(8): 43–46. ZHANG Jiang-hua, ZHAO A-ning, WANG Zhong-fu, et al. Discussion on the differences of heavy metals contamination in soil assessment with Nemerou index and geoaccumulation index:With Xiaoqinling gold belt as example[J]. Gold, 2010, 8(8): 43–46. (in Chinese) |
[26] | Forstner U, Ahlf W, Calmano W. Sediment quality objectives and criteria development in Germany[J]. Water Science and Technology, 1993, 28(8): 207–314. |
[27] | Hakanson L. An ecological risk index for aquatic pollution control:A sedimentological approach[J]. Water Research, 1980, 14(8): 975–1001. DOI:10.1016/0043-1354(80)90143-8 |
[28] | Khadigeh R E S, Mohammad R A, Kazem N, et al. Distribution of heavy metals in surface sediments from the south China sea ecosystem, Malaysia[J]. Environmental Monitoring and Assessment, 2011, 183(4): 545–554. |
[29] | 戴彬, 吕建树, 战金成, 等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学, 2015, 36(2): 507–515. DAI Bin, LV Jian-shu, ZHAN Jin-cheng, et al. Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province, eastern China[J]. Environmental Science, 2015, 36(2): 507–515. (in Chinese) |
[30] | 海米提依米提, 祖皮艳木买买提, 李建涛, 等. 焉耆盆地土壤重金属的污染及潜在生态风险评价[J]. 中国环境科学, 2014, 34(6): 1523–1530. Hamid Y, Zulpiya M, LI Jian-tao, et al. Sources explanation, pollution and assessment of potential ecological hazards of heavy metals in the soils of Yanqi basin, China[J]. China Environmental Science, 2014, 34(6): 1523–1530. (in Chinese) |
[31] | 秦鱼生, 喻华, 冯文强, 等. 成都平原北部水稻土重金属含量状况及其潜在生态风险评价[J]. 生态学报, 2013, 33(19): 6335–6344. QIN Yu-sheng, YU Hua, FENG Wen-qiang, et al. Assessment on heavy metal pollution status in paddy soils in the northern Chengdu plain and their potential ecological risk[J]. Acta Ecologica Sinica, 2013, 33(19): 6335–6344. (in Chinese) |
[32] | 陈涛, 常庆瑞, 刘京, 等. 长期污灌农田土壤重金属污染及潜在环境风险评价[J]. 农业环境科学学报, 2012, 31(11): 2152–2159. FAN Wen-hua, BAI Zhong-ke, LI Hui-feng, et al. Potential ecological environment risk assessment of soil heavy metals in sewage irrigation area[J]. Journal of Agro-Environment Science, 2012, 31(11): 2152–2159. (in Chinese) |
[33] | 石占飞, 王力. 神木矿区土壤重金属含量特征及潜在风险评价[J]. 农业环境科学学报, 2013, 32(6): 1150–1158. SHI Zhan-fei, WANG Li. Contents of soil heavy metals and evaluation on the potential pollution risk in Shenmu mining area[J]. Journal of Agro-Environment Science, 2013, 32(6): 1150–1158. (in Chinese) |
[34] | 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112–115. XU Zheng-qi, NI Shi-jun, TUO Xian-guo, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science& Technology, 2008, 31(2): 112–115. (in Chinese) |
[35] | 陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012, 39(2): 302–310. CHEN Xing-ren, CHEN Fu-rong, JIA Shi-jun, et al. Soil geochemical baseline and background in Yangtze River-Huaihe River basin of Anhui Province[J]. Geology in China, 2012, 39(2): 302–310. (in Chinese) |
[36] | 孟飞, 刘敏, 史同广. 上海农田土壤重金属的环境质量评价[J]. 环境科学, 2008(2): 2428–2433. MENG Fei, LIU Ming, SHI Tong-guang. Evaluation on environmental quality of heavy metals in agricultural soils of Shanghai[J]. Environmental Science, 2008(2): 2428–2433. (in Chinese) |
[37] | 陈峰, 胡振琪, 柏玉, 等. 矸石山周围土壤重金属污染的生态评价[J]. 农业环境科学学报, 2006, 25(增刊): 575–578. CHEN Feng, HU Zhen-qi, BAI Yu, et al. Ecological risk assessment of soils polluted by heavy metals around coal wastes piles[J]. Journal of Agro-Environment Science, 2006, 25(Suppl): 575–578. (in Chinese) |
[38] | 刘勇, 岳玲玲, 李晋昌. 太原市土壤重金属污染及其潜在生态风险评价[J]. 环境科学学报, 2011, 31(6): 1285–1293. LIU Yong, YUE Ling-ling, LI Jin-chang. Evaluation of heavy metal contamination and its potential ecological risk to the soil in Taiyuan, China[J]. Acta Scientiae Circumstantiae, 2011, 31(6): 1285–1293. (in Chinese) |
[39] | 许振成, 杨晓云, 温勇, 等. 北江中上游底泥重金属污染及其潜在生态危害评价[J]. 环境科学, 2009, 30(11): 3262–3268. XU Zhen-cheng, YANG Xiao-yun, WEN Yong, et al. Evaluation of the heavy metals contamination and its potential ecological risk of the sediments in Beijiang River's upper and middle reaches[J]. Environmental Science, 2009, 30(11): 3262–3268. DOI:10.3321/j.issn:0250-3301.2009.11.022(in Chinese) |
[40] | 何东明, 王晓飞, 陈丽君, 等. 基于地积累指数法和潜在生态风险指数法评价广西某蔗田土壤重金属污染[J]. 农业资源与环境学报, 2014, 31(2): 126–131. HE Dong-ming, WANG Xiao-fei, CHEN Li-jun, et al. Assessment on heavy metals contaminations of sugarcane soil in Guangxi Province by the geo-accumulation index and potential ecological risk index[J]. Journal of Agricultural Resources and Environment, 2014, 31(2): 126–131. (in Chinese) |
[41] | Lee C S L, Li X D, Shi W Z, et al. Metal contamination in urban, suburban, and country park soils of Hong Kong:A study based on GIS and multivariate statistics[J]. Science of the Total Environment, 2006, 356(1-3): 45–61. DOI:10.1016/j.scitotenv.2005.03.024 |
[42] | Fong F T, Chee P S, Mahmood A A, et al. Possible source and pattern distribution of heavy metals content in urban soil at Kuala Terengganu town center[J]. The Malaysian Journal of Analytical Sciences, 2008, 12(2): 458–467. |