MathJax.Hub.Config({tex2jax: {inlineMath: [['$', '$'], ['\\(', '\\)']]}}); 豆科禾本科作物间作的根际生物过程研究进展
快速检索        
  农业资源与环境学报  2016, Vol. 33 Issue (5): 407-415

文章信息

姜圆圆, 郑毅, 汤利, 肖靖秀, 曾婕, 张可欣
JIANG Yuan-yuan, ZHENG Yi, TANG Li, XIAO Jing-xiu, ZENG Jie, ZHANG Ke-xin
豆科禾本科作物间作的根际生物过程研究进展
Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review
农业资源与环境学报, 2016, 33(5): 407-415
Journal of Agricultural Resources and Environment, 2016, 33(5): 407-415
http://dx.doi.org/10.13254/j.jare.2016.0121

文章历史

收稿日期: 2016-05-09
豆科禾本科作物间作的根际生物过程研究进展
姜圆圆1, 郑毅1,2, 汤利1, 肖靖秀1, 曾婕3, 张可欣3     
1. 云南农业大学资源与环境学院, 云南 昆明 650201;
2. 云南省教育厅, 云南 昆明 650223;
3. 磷化集团有限公司磷资源开发利用工程技术研究分公司, 云南 昆明 650600
间作作为一种可持续发展的种植模式不仅具有产量和养分获取的优势,而且能够保证粮食安全、降低作物减产风险。在众多间作组合中,豆科禾本科作物间作由于种间促进及生态位互补作用,而在世界范围内被广泛应用。根际是作物-土壤-微生物相互作用的界面,是养分、水分及有害物质从土壤进入作物系统参与食物链物质循环的必经门户,在根际中所发生的生物过程不仅决定着养分的供应量和有效性,而且也影响着作物的生产力和养分利用效率。因此,本文从豆科禾本科间作的根际生物过程角度出发,综述了豆科禾本科间作对根系形态、根际微生物、根系分泌物及其生态效应的研究进展,为豆科禾本科间作体系在修复重金属污染土壤、提高土壤中养分有效性以及植物遗传改良等方面的应用提供理论依据。
关键词根际     根系分泌物     豆科     禾本科     间作     根际过程    
Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review
JIANG Yuan-yuan1, ZHENG Yi1,2, TANG Li1, XIAO Jing-xiu1, ZENG Jie3, ZHANG Ke-xin3     
1. College of Resource and Environment, Yunnan Agricultural University, Kunming 650201, China;
2. Education Department of Yunnan Province, Kunming 650223, China;
3. National Engineering and Technology Centre for the Development & Utilization of Phosphorous Re-sources, Kunming 650600, China
Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.
Key words: rhizosphere     root exudates     legume     cereal     intercropping     rhizosphere process    

间作是指两种或两种以上作物分行或分带相间种植在同一田块上的种植模式[1]。间作在世界范围内分布广泛,中国间作种植模式年播种面积超过2 800万hm2 [2],而在世界其他地区如印度、印度尼西亚、马里、尼日尔、中美和西欧等地都通过间作这一种植模式提高作物生产力[3]。间作与单作相比不仅具有产量和养分获取的优势,维持大多数土壤肥力特性的特点[4-5],而且具有保证粮食安全、降低作物减产风险的作用[6]。在众多间作系统中,豆科禾本科间作历史悠久,在中国当前所应用的100多种间作组合中,70%的组合都有豆科作物的参与[7]。豆科禾本科间作体系被广泛应用的原因在于豆科作物由于自身的固氮作用,能够有效固定空气中的氮,在与禾本科作物间作时,其所固定氮素的一部分可以通过各种途径转移并被禾本科作物所利用,从而提高氮素的利用效率[8-10]。另一方面,豆科与禾本科作物间作使得地上部以及地下部的时间、空间生态位分离[11],从而能够更好地利用自然界中的光、热、水分等资源,同时挖掘土壤中不同层次的养分资源,达到显著提高产量的优势。

根际作为作物-土壤-微生物相互作用的界面,担负着水分、养分及有害物质从土壤流入作物系统的门户作用,而根际过程能够影响作物水分、养分资源的高效利用、土壤中养分有效性的提高、农作物的化感作用、植物对环境胁迫的适应性、土传病害的防治以及环境的生态效应等。但是当前对于豆科禾本科间作的研究主要集中在地上部产量优势、养分获取等方面,而对于地下部相互作用的研究较少。因此,通过对豆科禾本科间作作物根际过程特别是生物过程的进一步研究,以期能够对修复重金属污染土壤、提高土壤中养分有效性以及植物遗传改良等方面提供理论依据。

1 豆科禾本科间作的类型及优势

豆科禾本科间作体系作为一种可持续发展的种植模式不仅引起了许多国家的关注[12-13],而且豆科禾本科作为世界上重要的粮食作物对于保障全球粮食安全具有重要意义。根据联合国粮农组织公布的最新数据显示,中国禾本科作物的收获面积高达9大类作物总收获面积的50%(图 1),由此可见,禾本科作物对于保障中国粮食安全所起到的重要作用。豆科禾本科间作种植体系不仅在中国具有悠久的历史,而且由于其所产生的优势作用而在世界范围内被广泛应用,具体间作的类型及其产生的间作优势如表 1所示。而从中国间作种植分布状况来看,中国西北灌溉区主要以小麦//大豆、玉米//蚕豆、小麦//蚕豆的体系为主,而中国北部以花生//玉米体系最为典型[14],小麦//蚕豆由于能够显著提高小麦产量、促进养分利用,有效控制病害,而使其在中国南部(特别是云南地区)得以广泛应用[15-19]。除此之外,豆科禾本科间作体系也被广泛应用于除南极洲以外的各大洲,并且对于许多温带和热带地区当地的粮食安全都作出了重大贡献[20]

图 1 中国9大类作物收获面积及各类作物在近20年所占比例(数据来源:FAOSTAT) Figure 1 Annual China total area harvested for nine crop categories, and the proportions of every category in two decades (1990—2013)
表 1 豆科禾本科作物间作类型及其优势 Table 1 The advantages and types of legume//cereal intercropping systems
2 豆科禾本科间作对根际生物过程的影响 2.1 豆科禾本科间作对根系形态的影响

根构型是指根系在土壤中的空间造型及分布,是决定植物获取土壤中养分资源的关键因素[40-42]。根构型是由基因型及环境因素共同影响的,不考虑基因型的差异,根构型最终受到各种各样的环境因素影响,如土壤中养分含量及其分布、机械阻抗及水分含量等。在养分胁迫条件下,植物根系可以通过形态构型、生理及与微生物互作的适应性变化改变根际过程,提高对土壤磷的吸收利用[42-44]。另一方面,根构型也受到邻近植物的竞争作用大小的影响[45]。研究表明在玉米//蚕豆体系中,间作玉米与单作玉米相比,总根长、根表面积及根生物量都显著增加[46]。Zhang等[47]的研究也表明玉米//蚕豆体系中玉米的根长随着供磷水平的增加而显著增加。而Li等[48]在对玉米//蚕豆体系的研究中提出,由于蚕豆根系分布较浅,间作的玉米根系分布在蚕豆根系下方并与上层土壤剖面的蚕豆根系交错在一起,两个物种根系分布的兼容性可能是玉米//蚕豆间作种间促进效应的机制之一。

2.2 豆科禾本科间作对根际微生物的影响

自德国植物病理学家Lorenz Hiltner于1904年将根际定义为植物根系周围、受根系活动影响的微域土壤(图 2),对根际的研究也就越来越受到人们的关注,伴随着现代仪器分析方法以及分子生物学的巨大进步,对根际微生物的研究也逐渐加强。根际微生物主要包括细菌、真菌(包括丛枝菌根真菌)、卵菌、病毒和古生细菌等,这些微生物一般以根淀积物(如根分泌物、黏胶物质、边缘细胞等)为食。土壤作为一个巨大的微生物种子库,植物生长的地方就已经决定了根系所能接触到的本土微生物种类,而不同的植物品种通过影响根系形态、根淀积物的类型与数量又能改变根际微生物的组成和活性[49]

图 2 根际放大图,包括腐生和共生的细菌真菌(包括丛枝菌根)[49] Figure 2 The magnified pictures of the rhizosphere, containing saprophytic and symbiotic bacteria and fungi, including arbuscular mycorrhizal fungi(AMF)[49]

豆科禾本科间作作为不同作物种类组合而成的复合群体,对根际微生物数量、生物量及种群改变必然会有很大影响。沈雪峰等[50]在对甘蔗//花生系统研究中得出,间作与单作相比能够显著提高花生和甘蔗根际土壤细菌及真菌的数量,唐秀梅等[51]在研究木薯//花生对土壤微生态的影响时,也得到了相同的结论。而章家恩等[52]的研究表明,间作能显著提高玉米和花生根区的土壤细菌数量,但土壤真菌及放线菌数量只在间作玉米根区得到显著提高。董艳等[53]在对小麦//蚕豆体系的研究中也发现,间作能增加小麦蚕豆根际微生物的数量。另一方面,根际微生物生物量也受到间作体系的影响,Tang等[54]的研究表明,小麦在与鹰嘴豆、扁豆间作时,豆科作物根际的微生物生物碳及微生物生物磷含量都显著增加。而Song等[55]的研究表明,小麦//蚕豆与单作相比显著提高了小麦根际微生物量碳,但却显著降低小麦根际微生物量氮,同时在小麦//蚕豆、玉米//蚕豆体系中,单作蚕豆根际生物量碳显著高于间作蚕豆。

豆科禾本科间作不仅能够改变根际微生物的数量和生物量,而且对根际微生物种群的组成也有一定的影响,宋亚娜等[56]在对小麦//蚕豆体系的研究中发现,根际细菌群落多样性在小麦蚕豆生长进入花期时得到显著提高。李冬梅[57]的研究也表明,小麦//苜蓿显著提高了根际微生物群落多样性。同时,Qiao等[29]发现燕麦//箭筈豌豆也能够提高土壤细菌的多样性指数和丰度。

2.3 豆科禾本科间作的根分泌物变化及其生态效应 2.3.1 豆科禾本科植物根分泌物的化感作用

经过多年的研究,存在于豆科禾本科作物中的一部分自毒物质已经被识别(表 2),并且这些自毒物质的化感作用是通过影响细胞分裂、水分和离子的吸收、暗呼吸作用、ATP的合成、氧化还原平衡、基因表达和防御反应等进行的[58]。韩丽梅等[59]通过对大豆根分泌物的研究发现,经过两周培养的根分泌物抑制了胚根的生长,由此表明化感物质存在于大豆根分泌物中。Tang 等[60] 的试验也表明禾本科牧草的根分泌物能使豆科植物的生长受到抑制,使其根系生长减慢,根瘤数量也显著降低,而且还发现番木瓜的根分泌物具有很强的毒性,这可能是因为根分泌物中含有大量的酚类物质。然而豆科以及禾本科作物根分泌物也会产生化感促进作用,研究表明,导致红壤地区连作花生青枯害发生严重的原因很可能与花生根系分泌物中苯乙酮的积累对花生青枯病原菌产生的化感促进作用有关[61]。除此之外,刘苹等[62]也发现,花生根分泌物对根腐镰刀菌菌丝的生长也有一定的化感促进作用。

表 2 豆科禾本科作物中已识别的自毒物质 Table 2  List of known autotoxins
2.3.2 豆科禾本科植物根分泌物对养分有效性的影响

研究表明根系分泌物可以调控植物根际的养分有效性,根系分泌物不但可以直接提高根际中难溶性养分的活化和利用效率,而且可以通过影响根际微生物的种群分布进而影响根际养分的生物有效性[72]。在豆科禾本科间作体系中,由于豆科作物的生物固氮作用或根际有机酸的分泌导致的根际pH值的降低,对于活化土壤中难利用态的磷都具有重要作用[31, 73],陈佰岩等[74]和王宇蕴等[21, 75]的研究结果也验证了这一结论。Li等[24]和Song等[55]的研究也都表明间作能够提高土壤中磷的有效性。Li等[76]的研究结果表明:玉米//蚕豆的种间相互作用促进了蚕豆的生物固氮,同时也提高了玉米和蚕豆获取氮的能力。肖靖秀等[18] 研究发现小麦//蚕豆可以提高小麦钾吸收量32%~69%。除此之外,间作对于微量元素的吸收也有重要影响,试验表明,花生与小麦或玉米间作后,花生叶片和籽粒 Fe 含量均会提高,从而改善单作花生缺Fe新叶黄化的现象,实现花生籽粒Fe 的富集[27, 77-80]。另外有盆栽研究表明,将花生与不同品种玉米(丹玉13 和中单2号)、高粱、燕麦、小麦和大麦等不同的禾本科植物间作时,都能显著改善花生 Fe、Zn 甚至Cu的营养状况,尤其是与燕麦、小麦、大麦间作的花生新叶叶绿素和活性Fe含量提高幅度更大[81]。但Xia[82]的研究表明,玉米与蚕豆、大豆及鹰嘴豆间作促进了玉米对微量元素Fe、Mn、 Cu、 Zn的吸收,但是降低了玉米籽粒中Fe、Mn、 Cu、 Zn的浓度。

2.3.3 豆科禾本科植物根分泌物对重金属活性的影响

根系分泌物不仅可以改善根际养分的有效性,而且对土壤中重金属的活性也有一定的影响,产生这种影响的原因可能是:(1)根系分泌物通过改变根际酸碱反应、氧化还原状况等条件而影响土壤中重金属活性。徐卫红等[83]的研究表明,根分泌的有机酸、氨基酸等有机物被根际微生物利用,使根际土壤的氧化还原低于非根际土,从而改变根际土壤中变价重金属如Cr、Cu等的形态及有效性;(2)根系分泌的大分子量黏胶物质通过与重金属离子(如Pb2+、Cu2+和Cd2+)的络合而形成稳定的螯合体,从而将重金属离子固定在土壤中。黄国勇等[84] 的研究表明,根系分泌的粘胶物质与根际土壤中的 Cu2+络合,形成稳定的螯合体,将其固定在污染土壤中;(3)根系分泌物中的低分子量的有机酸、多肽以及氨基酸对土壤中富余的重金属离子也具有较强的络合能力,从而减轻有害金属离子对作物的影响。陈秀玲等[85]的研究表明,小麦与花生间作缺铁条件下,小麦的根系分泌物与土壤中Cd2+的螯合产物不容易被作物吸收。而有些植物如小麦、黑麦、大麦和豌豆等在遭受铝毒害时,根系分泌较多的 OH-,将铝沉淀在根表[86]。在铝胁迫条件下植物根系会产生许多种有机酸,耐铝型小麦作物品种根系分泌苹果酸;菜豆和玉米能大量分泌柠檬酸,铝与有机酸形成鳌合物达到解铝毒的目的[87];(4)根际微生物种群、微生物分泌物以及根系与微生物的相互作用的改变对土壤中重金属的生物有效性产生重要影响。根系分泌物可以加强土壤中微生物的活性[88],而微生物在将大分子化合物转化为小分子化合物过程中生成的产物对根际重金属有显著的活化作用。另一方面微生物也可以分泌出质子、有机质,增加对植物根际重金属元素的活化能力[89]。因此,通过筛选具有不同特性的豆科禾本科作物组合对于改善土壤中重金属活性具有重要意义。

2.3.4 豆科禾本科植物根分泌物中的黏胶物质对土壤结构的影响

植物根系释放的分泌物与土壤颗粒能够形成根壳,玉米根系能够释放大量粘液,从而形成明显的根壳[90]。根壳在养分和水分的吸收、缓解环境胁迫中具有重要作用[90-96]。这是由于粘液的吸湿性导致根壳的含水量高于土体,从而促进了养分水分的活化与吸收[92, 95-96]。Sprent[91] 的研究表明,土壤颗粒与根系的粘结主要是由于粘液的粘合作用而形成的。粘液与土壤的粘结作用对于土壤颗粒的团聚来说是十分重要的,尤其是在干旱条件下能保证根系与土壤的紧密接触[72]

3 展望

间作种植体系不但具有充分挖掘光、热、水等自然资源的潜力,而且能够充分利用时间和空间,提高作物生产力,因此,间作在未来的农业体系中具有很强的发展空间。然而当前对于间作体系的研究多集中于地上部,对于植物地下部的交互作用还不清楚,特别是间作体系中根分泌物的释放及其作用机制、养分高效利用的根际动态过程等方面的研究亟需加强,另一方面,间作体系对根际微生物的研究还需逐步加强,可以结合分子生物学等方面的知识和技术将其明朗化,也有助于我们对地下部的作用机理更为了解,从而通过根际调控充分发挥作物的自身生物学潜力,提高养分资源利用效率和作物生产力。

参考文献
[1] 曹卫星. 作物学通论[M]. 北京: 高等教育出版社 ,2001 . CAO Wei-xing. An introduction to crop[M]. Beijing: Higher Education Press , 2001 . (in Chinese)
[2] Liu X H. The farming systerms[M]. Beijing: China Agriculture University Press , 1994 .
[3] Zomer R J, Trabucco A, Coe R, et al. Trees on farm: Analysis of global extent and geographical patterns of agroforestry[C]. ICRAF Working Paper-World Agroforestry Centre, 2009: 89.
[4] Wang Z G, Jin X, Bao X G, et al. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping[J]. Plos One , 2014, 9 (12) : e0113984. DOI:10.1371/journal.pone0113984
[5] Wang Z G, Bao X G, Li X F, et al. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade[J]. Plant and Soil , 2015, 391 : 265–282. DOI:10.1007/s11104-015-2428-2
[6] Rusinamhodzi L, Corbeels M, Nyamangara J, et al. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for small-holder farmers in central Mozambique[J]. Field Crops Research , 2012, 136 : 12–22. DOI:10.1016/j.fcr.2012.07.014
[7] Li C, Dong Y, Li H, et al. The dynamic process of interspecific interac-tions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.)and faba bean(Vicia faba L.)[J]. Plos One , 2014, 9 (12) : e115804. DOI:10.1371/journal.pone.0115804
[8] Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley inter-cropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems[J]. Field Crops Research , 2009, 113 : 64–71. DOI:10.1016/j.fcr.2009.04.009
[9] Li C J, Li Y Y, Yu C B, et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combination and patterns of strip in-tercropping in northwest China[J]. Plant and Soil , 2011, 342 : 221–231. DOI:10.1007/s11104-010-0686-6
[10] 肖靖秀, 汤利, 郑毅, 等. 大麦//蚕豆间作条件下供氮水平对作物产量和大麦氮吸收累积的影响[J]. 麦类作物学报 , 2011, 31 (3) : 499–503. XIAO Jing-xiu, TANG Li, ZHENG Yi, et al. Effects of N level on yield of crops, N absorption and accumulation of barley in barley and faba bean intercropping system[J]. Journal of Triticeae Crops , 2011, 31 (3) : 499–503. (in Chinese)
[11] 王恭祎, 段碧华, 石书兵. 作物间作[M]. 北京: 中国农业科学技术出版社 ,2013 . WANG Gong-wei, DUAN Bi-hua, SHI Shu-bing. Crops intercropping[M]. Beijing: China Agriculture Scientech Press , 2013 . (in Chinese)
[12] Park S E, Benjamin L R, Watkinson A R. Comparing biological produc-tivity in cropping systems: A competition approach[J]. Journal of Ap-plied Ecology , 2002, 39 : 416–426. DOI:10.1046/j.1365-2664.2002.00732.x
[13] Gliessman S R. Agroecology: The ecology of sustainable food systems[M]. New York: CRC Press , 2007 .
[14] ZHANG Fu-suo, Li Long. Using competitive and facilitative interaction in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil , 2003, 248 : 305–312. DOI:10.1023/A:1022352229863
[15] 李勇杰, 陈远学, 汤利, 等. 地下部分隔对间作小麦养分吸收和白粉病发生的影响[J]. 植物营养与肥料学报 , 2007, 13 (5) : 929–934. LI Yong-jie, CHEN Yuan-xue, TANG Li, et al. Effects of root separa-tion on nutrient uptake of wheat and occurrence of powdery mildew under wheat-faba bean intercropping[J]. Plant Nutrition and Fertilizer Science , 2007, 13 (5) : 929–934. (in Chinese)
[16] 乔鹏, 汤利, 郑毅, 等. 不同抗性小麦品种与蚕豆间作条件下的养分吸收与白粉病发生特征[J]. 植物营养与肥料学报 , 2010, 16 (5) : 1086–1093. QIAO Peng, TANG Li, ZHENG Yi, et al. Characteristics of nutrient up-takes and powdery mildew incidence of different resistant wheat culti-vars intercropping with faba bean[J]. Plant Nutrition and Fertilizer Sci-ence , 2010, 16 (5) : 1086–1093. (in Chinese)
[17] 聂艳丽, 汤利, 郑毅. 施用麦根酸对小麦蚕豆间种和蚕豆单作吸收红壤中磷的影响[J]. 云南农业大学学报 , 2004, 19 (2) : 202–206. NIE Yan-li, TANG Li, ZHENG Yi. Effects of applying mugineic acids on P uptake of red soil in wheat-broad bean intercropping and broad bean monoculture system[J]. Journal of Yunnan Agricultural Uni-versity , 2004, 19 (2) : 202–206. (in Chinese)
[18] 肖靖秀, 周桂夙, 汤利, 等. 小麦//蚕豆间作条件下小麦的氮、钾营养对小麦白粉病的影响[J]. 植物营养与肥料学报 , 2006, 12 (4) : 517–522. XIAO Jing-xiu, ZHOU Gui-su, TANG Li, et al. Effects of nitrogen and potassium nutrition on the occurence of Blumeria graminis(DC). Speer of wheat in wheat and faba bean intercropping[J]. Plant Nutrition and Fertilizen Science , 2006, 12 (4) : 517–522. (in Chinese)
[19] Chen Y X, Zhang F S, Tang L. Wheat powdery mildew and foliar N concentration as influenced by N fertilization and belowground inter-actions with intercropped with faba bean[J]. Plant and Soil , 2007, 291 (1-2) : 1–13. DOI:10.1007/s11104-006-9161-9
[20] Mucheru-Muna M, Pypers P, Mugendi D, et al. A staggered maize-legume intercrop arrangement robustly increases crop yields and eco-nomic returns in the highlands of central Kenya[J]. Field Crop Re-search , 2010, 115 : 132–139. DOI:10.1016/j.fcr.2009.10.013
[21] 王宇蕴, 郑毅, 汤利. 不同抗性小麦品种与蚕豆间作对小麦根际速效养分含量的影响[J]. 土壤通报 , 2012, 43 (2) : 466–472. WANG Yu-yun, ZHENG Yi, TANG Li. Effects of intercropping with different resistant wheat varieties and faba beans on available nutrient content in the rhizosphere[J]. Chinese Journal of Soil Science , 2012, 43 (2) : 466–472. (in Chinese)
[22] 杨智仙, 汤利, 郑毅, 等. 不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响[J]. 植物营养与肥料学报 , 2014 (3) : 570–579. YANG Zhi-xian, TANG Li, ZHENG Yi, et al. Effects of different wheat cultivars intercropped with faba bean on faba bean Fusarium wilt, root exudates and rhizosphere microbial community functional diversity[J]. Plant Nutrition and Fertilizen Science , 2014 (3) : 570–579. (in Chinese)
[23] 张德闪, 王宇蕴, 汤利, 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系[J]. 植物营养与肥料学报 , 2013 (1) : 127–133. ZHANG De-shan, WANG Yu-yun, TANG Li, et al. Effects of wheat and faba bean intercropping on available phosphorus of red soils and its relationship with rhizosphere soil pH[J]. Plant Nutrition and Fertilizen Science , 2013 (1) : 127–133. (in Chinese)
[24] Li Long, Li Shu-min, Sun Jian-hao, et al. Diversity enhances agricul-tural productivity via rhizosphere phosphorus facilitation on phospho-rus-deficient soils[J]. Proceedings of the National Academy of Sci-ences , 2007, 104 (27) : 11192–11196. DOI:10.1073/pnas.0704591104
[25] Li Yu-ying, Yu Chang-bin, Cheng Xu, et al. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean[J]. Plant and Soil , 2009, 323 : 295–308. DOI:10.1007/s11104-009-9938-8
[26] Li Qiu-zhu, Sun Jian-hao, Wei Xiao-jing, et al. Overyielding and in-terspecific interactions mediated by nitrogen fertilization in strip inter-cropping of maize with faba bean, wheat and barley[J]. Plant and Soil , 2011, 339 : 147–161. DOI:10.1007/s11104-010-0561-5
[27] 左元梅, 李晓林, 王永歧, 等. 玉米花生间作对花生铁营养的影响[J]. 植物营养与肥料学报 , 1997 (2) : 153–159. ZUO Yuan-mei, LI Xiao-lin, WAGN Yong-qi, et al. Effect of maize/ peanut intercropping on iron nutrition of peanut[J]. Plant Nutrition and Fertilizen Science , 1997 (2) : 153–159. (in Chinese)
[28] 褚贵新, 沈其荣, 张娟, 等. 用15N富积标记和稀释法研究旱作水稻/花生间作系统中氮素固定和转移[J]. 植物营养与肥料学报 , 2003 (4) : 385–389. CHU Gui-xin, SHEN Qi-rong, ZHANG Juan, et al. Comparision of two methods used to study the biological nitrogen fixation and nitrogen transfer from peanut to rice in aerobic soil of intercropping system[J]. Plant Nutrition and Fertilizen Science , 2003 (4) : 385–389. (in Chinese)
[29] Qiao Y J, Li Z Z, Wang X, et al. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere[J]. Plant Soil Environment , 2012, 58 (4) : 174–180.
[30] Latati D, Blavet N, Alkama H, et al. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil[J]. Plant and Soil , 2014, 385 : 181–191. DOI:10.1007/s11104-014-2214-6
[31] Li H G, Shen J B, Zhang F S, et al. Dynamics of phosphorus fractions in the rhizosphere of common bean(Phaseolus vulgaris L.)and durum wheat (Triticum turgidum durum L.)grown in monocropping and inter-cropping systems[J]. Plant and Soil , 2008, 312 : 139–150. DOI:10.1007/s11104-007-9512-1
[32] 杨文亭, 李志贤, 舒磊, 等. 甘蔗//大豆间作和减量施氮对甘蔗产量、植株及土壤氮素的影响[J]. 生态学报 , 2011, 31 (20) : 6108–6115. YANG Wen-ting, LI Zhi-xian, SHU Lei, et al. Effect of sugarcane//soybean intercropping and reduced nitrogen rates on sugarcane yield, plant and soil nitrogen[J]. Acta Ecologica Sinica , 2011, 31 (20) : 6108–6115. (in Chinese)
[33] 杨文亭, 李志贤, 赖健宁, 等. 甘蔗-大豆间作和减量施氮对甘蔗产量和主要农艺性状的影响[J]. 作物学报 , 2014, 40 (3) : 556–562. DOI:10.3724/SP.J.1006.2014.00556 YANG Wen-ting, LI Zhi-xian, LAI Jian-ning, et al. Effects of sugar-cane-soybean intercropping and reduced nitrogen application on yield and major agronomic traits of sugarcane[J]. Acta Agronomica Sinica , 2014, 40 (3) : 556–562. DOI:10.3724/SP.J.1006.2014.00556 (in Chinese)
[34] 管奥湄, 章莹, 刘宇, 等. 减量施氮与间作大豆对蔗田碳平衡特征的影响[J]. 中国生态农业学报 , 2016, 24 (4) : 478–488. GUAN Ao-mei, ZHANG Ying, LIU Yu, et al. Effects of reduced nitro-gen application and sugarcane-soybean intercropping on carbon bal-ance in sugarcane fields[J]. Chinese Journal of Eco-Agriculture , 2016, 24 (4) : 478–488. (in Chinese)
[35] 李志贤, 王建武, 杨文亭, 等. 广东省甜玉米//大豆间作模式的效益分析[J]. 中国生态农业学报 , 2010, 18 (3) : 627–631. DOI:10.3724/SP.J.1011.2010.00627 LI Zhi-xian, WANG Jian-wu, YANG Wen-ting, et al. Benefit of sweet corn//soybean intercropping in Guangdong Province[J]. Chinese Journal of Eco-Agriculture , 2010, 18 (3) : 627–631. DOI:10.3724/SP.J.1011.2010.00627 (in Chinese)
[36] 唐艺玲, 管奥湄, 周贤玉, 等. 减量施氮与间作大豆对华南地区甜玉米连作农田N2O排放的影响[J]. 中国生态农业学报 , 2015, 23 (12) : 1529–1535. TANG Yi-ling, GUAN Ao-mei, ZHOU Xian-yu, et al. Effect of re-duced N application and soybean intercropping on soil N2O emission in sweet corn fields in South China[J]. Chinese Journal of Eco-Agricul-ture , 2015, 23 (12) : 1529–1535. (in Chinese)
[37] Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley inter-cropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems[J]. Field Crops Research , 2009, 113 : 64–71. DOI:10.1016/j.fcr.2009.04.009
[38] Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley inter-cropping and short-term subsequent crop effects across European or-ganic cropping conditions[J]. Nutrient Cycling in Agroecosyst , 2009, 85 : 141–155. DOI:10.1007/s10705-009-9254-y
[39] Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, et al. The competitive ability of pea barley intercrops against weeds and the interactions with crop productivity and soil N availability[J]. Field Crops Research , 2011, 122 : 264–272. DOI:10.1016/j.fcr.2011.04.004
[40] Fitter A, Atkinson D. The ecological significance of root system archi-tecture: An ecological perspective[M]. Oxford: Blackwell Scientific Publications , 1991 .
[41] Fukaki H, Okushima Y, Tasaka M. Regulation of lateral root formation by auxin signaling in Arabidopsis[J]. Plant Biotechnology Journal , 2005, 22 : 393–399. DOI:10.5511/plantbiotechnology.22.393
[42] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist , 2003, 157 (3) : 423–447. DOI:10.1046/j.1469-8137.2003.00695.x
[43] Lambers H, Shane M W, Cramer M D, et al. Root structure and func-tioning for efficient acquisition of phosphorus: Matching morphological and physiological traits[J]. Annals of Botany , 2006, 98 (4) : 693–713. DOI:10.1093/aob/mcl114
[44] Richardson A E, Barea J M, McNeill A M, et al. Acquisition of phos-phorus and nitrogen in the rizosphere and plant growth promotion by microorganisms[J]. Plant and Soil , 2009, 321 : 305–339. DOI:10.1007/s11104-009-9895-2
[45] Marl忆a M C, Jorge M V, Flavio H G B, et al. The effect of root exudates on root architecture in Arabidopsis thaliana[J]. Plant Growth Regula-tion , 2011, 64 : 241–249. DOI:10.1007/s10725-011-9564-3
[46] Zhang Y K, Chen F J, LI L, et al. The role of maize root size in phos-phorus uptake and productivity of maize/faba bean and maize/wheat in-tercropping systems[J]. Science China (Life Sciences) , 2012, 55 (11) : 993–1001. DOI:10.1007/s11427-012-4396-6
[47] Zhang D S, Zhang C C, Tang X Y, et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize[J]. New Phytologist , 2016, 209 : 823–831. DOI:10.1111/nph.13613
[48] Li L, Sun J H, Zhang F S. Intercropping with wheat leads to greater root weight density and larger below-ground space of irrigated maize at late growth stages[J]. Soil Science and Plant Nutrition , 2011, 57 (1) : 61–67. DOI:10.1080/00380768.2010.548307
[49] Laurent P, Jos M R, Philippe L, et al. Going back to the roots: The mi-crobial ecology of the rhizosphere[J]. Nature Reviews Microbiology , 2013, 11 : 789–799. DOI:10.1038/nrmicro3109
[50] 沈雪峰, 方越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响[J]. 作物杂志 , 2014 (5) : 55–58. SHEN Xue-feng, FANG Yue, DONG Zhao-xia, et al. Effects of sugar-cane/peanut intercropping on soil microbes and soil enzyme activities[J]. Crops , 2014 (5) : 55–58. (in Chinese)
[51] 唐秀梅, 钟瑞春, 蒋菁, 等. 木薯/花生间作对根际土壤微生态的影响[J]. 基因组学与应用生物学 , 2015, 34 (1) : 117–124. TANG Xiu-mei, ZHONG Rui-chun, JIANG Jing, et al. The effect of cassava/peanut intercropping on microecology in rhizosphere soil[J]. Genomics and Applied Biology , 2015, 34 (1) : 117–124. (in Chinese)
[52] 章家恩, 高爱霞, 徐华勤, 等. 玉米/花生间作对土壤微生物和土壤养分状况的影响[J]. 应用生态学报 , 2009, 20 (7) : 1597–1602. ZHANG Jia-en, GAO Ai-xia, XU Hua-qin, et al. Effects of maize/ peanut intercropping on rhizosphere soil microbes and nutrient con-tents[J]. Chinese Journal of Applied Ecology , 2009, 20 (7) : 1597–1602. (in Chinese)
[53] 董艳, 汤利, 郑毅, 等. 施氮对间作蚕豆根际微生物区系和枯萎病发生的影响[J]. 生态学报 , 2010, 30 (7) : 1797–1805. DONG Yan, TANG Li, ZHENG Yi, et al. Effects of N applicationon rhizosphere microflora and fusarium wilt occurrence of intercropped fababean[J]. Acta Ecologica Sinica , 2010, 30 (7) : 1797–1805. (in Chinese)
[54] TANG X Y, Bernard L, Brauman A, et al. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions[J]. Soil Biology & Biochem-istry , 2014, 75 : 86–93.
[55] Song Y N, Zhang F S, Marschner P, et al. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat(Triticum aestivum L.), maize(Zea mays L.), and faba bean (Vicia faba L.)[J]. Biology and Fertility of Soils , 2007, 43 : 565–574. DOI:10.1007/s00374-006-0139-9
[56] 宋亚娜, MarschnerPetra, 张福锁, 等. 小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J]. 生态学报 , 2006, 7 (7) : 2268–2274. SONG Ya-na, Marschner Petra, ZHANG Fu-suo, et al. Effect of inter-cropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.)[J]. Acta Ecologica Sinica , 2006, 7 (7) : 2268–2274. (in Chinese)
[57] LI Dong-mei Soil microbial diversity and interspecific facilitation inZUO Yuan-mei, LI Xiao-lin, WANG Qiu-jie, et al. Study on mecha-ZUO Yuan-mei, LI Xiao-lin, WANG Qiu-jie, et al. Study on mecha-nisms of improvement of iron nutrition of peanut by intercropping with maize or wheat[J]. Acta Ecologica Sinica , 1998 (5) : 43–49.
[58] Huang L F, Song L X, Xia X J, et al. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture[J]. Journal of Chemical Ecology , 2013, 39 : 232–242. DOI:10.1007/s10886-013-0244-9
[59] 韩丽梅, 王树起, 鞠会艳, 等. 大豆根分泌物的鉴定及其化感作用的初步研究[J]. 大豆科学 , 2000 (2) : 119–125. HAN Li-mei, WANG Shu-qi, JU Hui-yan, et al. Identifition and study on allelopathy of soybean root exudates[J]. Soybean Science , 2000 (2) : 119–125. (in Chinese)
[60] Tang C S, Young C C. Collection and identification of allelopathic com-pounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima)[J]. Plant Physiology , 1982, 69 : 155–160. DOI:10.1104/pp.69.1.155
[61] 王小兵, 骆永明, 刘五星, 等. 花生根分泌物的鉴定及其化感作用[J]. 生态学杂志 , 2011 (12) : 2803–2808. WANG Xiao-bing, LUO Yong-ming, LIU Wu-xing, et al. Identifica-tion of peanut root exudates and their allelopathic effects[J]. Chinese Journal of Ecology , 2011 (12) : 2803–2808. (in Chinese)
[62] 刘苹, 江丽华, 万书波, 等. 花生根系分泌物对根腐镰刀菌和固氮菌的化感作用研究[J]. 中国农业科技导报 , 2009, 11 (4) : 107–111. LIU Ping, JIANG Li-hua, WAN Shu-bo, et al. Studies on allelopathy of peanut root exudates on root rot fungi and N-fixing bacteria[J]. Journal of Agricultural Science and Technology , 2009, 11 (4) : 107–111. (in Chinese)
[63] Miller H G, Ikawa M, Petrce L C. Caffeic acid identified as an inhibito-ry compound in asparagus root filtrate[J]. Hort Science , 1991, 26 : 1525–1527.
[64] Dornbos D L, Spencer G F, Miller R W. Medicarpin delays alfalfa seed-germination and seedling growth[J]. Crop Science , 1990, 30 : 162–166. DOI:10.2135/cropsci1990.0011183X003000010035x
[65] Chung I M, Seigler D, Miller D A, et al. Autotoxic compounds from fresh alfalfa leaf extracts: Identification and biological activity[J]. Jour-nal of Chemical Ecology , 2000, 26 : 315–327. DOI:10.1023/A:1005466200919
[66] Chon S U, Choi S K, Jung S, et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass[J]. Crop Protection , 2002, 21 : 1077–1082. DOI:10.1016/S0261-2194(02)00092-3
[67] Asaduzzaman M, Asao T. Autotoxicity in beans and their allelochemi-cals[J]. Scientia Horticulturae , 2012, 134 : 26–31. DOI:10.1016/j.scienta.2011.11.035
[68] Asaduzzaman M, Kobayashi Y, Isogami K, et al. Growth and yield re-covery in strawberry plants under autotoxicity through electrodegrada-tion[J]. European Journal of Horticultural Science , 2012, 77 : 58–67.
[69] Yu J Q, Matsui Y. Autointoxication of root exudates in Pisum sativus[J]. Acta Hort Sinica , 1999, 26 : 175–179.
[70] Guenz W D, Mccalla T M. Phytotoxic substances extracted from soil[J]. Soil Science Society of America Journal , 1966, 30 : 214–216. DOI:10.2136/sssaj1966.03615995003000020021x
[71] Lodhi M A K, Bilal R, Malik K A. Allelopathy in agroecosystems: Wheat phytotoxicity and its possible roles in crop-rotation[J]. Journal of Chemical Ecology , 1987, 13 : 1881–1891. DOI:10.1007/BF01013237
[72] 张福锁, 申建波, 冯固, 等. 根际生态学——过程与调控[M]. 北京: 中国农业大学出版社 ,2009 . ZHANG Fu-suo, SHEN Jian-bo, FENG Gu, et al. Rhizosphere ecology: Process & management[M]. Beijing: China Agricultural University Press , 2009 . (in Chinese)
[73] Li H G, Shen J B, Zhang F S, et al. Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil[J]. Biology and Fertility of Soils , 2010, 46 : 79–91. DOI:10.1007/s00374-009-0411-x
[74] 陈佰岩, 郑毅, 汤利. 磷胁迫条件下小麦、蚕豆根系分泌物对红壤磷的活化[J]. 云南农业大学学报 , 2009, 24 (6) : 869–875. CHEN Bai-yan, ZHENG Yi, TANG Li. Mobilizing phosphorus in red soils by root exudates of wheat and broad bean under phosphorus stress condition[J]. Journal of Yunnan Agricultural University , 2009, 24 (6) : 869–875. (in Chinese)
[75] 王宇蕴, 任家兵, 郑毅, 等. 间作小麦根际和土体磷养分的动态变化[J]. 云南农业大学学报(自然科学版) , 2011, 26 (6) : 851–855. WANG Yu-yun, REN Jia-bing, ZHENG Yi, et al. Dynamics of avail-able phosphorus in rhizosphere and bulk soil of wheat under intercrop-ping[J]. Journal of Yunnan Agricultural University(Natural Science) , 2011, 26 (6) : 851–855. (in Chinese)
[76] Li Yu-ying, Yu Chang-bin, Xu Heng, et al. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean[J]. Plant and Soil , 2009, 323 : 295–308. DOI:10.1007/s11104-009-9938-8
[77] 左元梅, 李晓林, 王秋杰, 等. 玉米、小麦与花生间作改善花生铁营养机制的探讨[J]. 生态学报 , 1998 (5) : 43–49. Yuan-mei, LI Xiao-lin, WANG Qiu-jie, et al. Study on mecha-nisms of improvement of iron nutrition of peanut by intercropping with maize or wheat[J]. Acta Ecologica Sinica , 1998 (5) : 43–49. (in Chinese)
[78] Zuo Y, Zhang F, Li X, et al. Studies on the improvement in iron nutri-tion of peanut by intercropping with maize on a calcareous soil[J]. Plant and Soil , 2000, 220 : 13–25. DOI:10.1023/A:1004724219988
[79] Zuo Y, Li X, Cao Y, et al. Iron nutrition of peanut enhanced by mixed cropping with maize: Possible role of root morphology and rhizosphere microflora[J]. Journal of Plant Nutrition , 2003, 26 : 2093–2110. DOI:10.1081/PLN-120024267
[80] Inal A, Gunes A, Zhang F, et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots[J]. Plant Physiology and Biochemistry , 2007, 45 : 350–356. DOI:10.1016/j.plaphy.2007.03.016
[81] Zuo Y, Zhang F. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species: A review[J]. Agronomy for Sustainable Development , 2009, 29 : 63–71. DOI:10.1051/agro:2008055
[82] Xia H Y, Zhao J H, Sun J H, et al. Maize grain concentrations and above-ground shoot acquisition of micronutrients as affected by inter-cropping with turnip, faba bean, chickpea, and soybean[J]. Science China (Life Sciences) , 2013, 56 : 823–834. DOI:10.1007/s11427-013-4524-y
[83] 徐卫红, 黄河, 王爱华, 等. 根系分泌物对土壤重金属活化及其机理研究进展[J]. 生态环境 , 2006 (1) : 184–189. XU Wei-hong, HUANG He, WANG Ai-hua, et al. Advance in studies on activation of heavy metal by root exudates and mechanism[J]. Ecolo-gy and Environment , 2006 (1) : 184–189. (in Chinese)
[84] 黄国勇, 胡红青, 刘永红, 等. 根际与非根际土壤铜化学行为的研究进展[J]. 中国农业科技导报 , 2014 (2) : 92–99. HUANG Guo-yong, HU Hong-qing, LIU Yong-hong, et al. Progress on copper chemical behavior in rhizosphere and non-rhizosphere soil[J]. Journal of Agricultural Science and Technology , 2014 (2) : 92–99. (in Chinese)
[85] 陈秀玲, 张磊, 王凯荣. 不同铁营养状况下间作小麦对花生吸收Cd的影响[J]. 水土保持学报 , 2014 (1) : 257–261. CHEN Xiu-ling, ZHANG Lei, WANG Kai-rong. Influence intercrop-ping wheat on cadmium uptake of peanut under varied iron nutrition[J]. Journal of Soil and Water Conservation , 2014 (1) : 257–261. (in Chinese)
[86] 张福锁. 植物根引起的根际pH值改变的原因及效应[J]. 土壤通报 , 1993, 24 (1) : 43–45. ZHANG Fu-suo. Effects of the change of rhizosphere pH caused by plant roots[J]. Chinese Journal of Soil Science , 1993, 24 (1) : 43–45. (in Chinese)
[87] 胡春梅, 陈海霞, 王小花, 等. 铝诱导有机酸分泌的耐铝机理研究进展[J]. 中国农学通报 , 2014 (1) : 120–123. HU Chun-mei, CHEN Hai-xia, WANG Xiao-hua, et al. The improve-ment of mechanism of aluminum for organic acid[J]. Chinese Agricul-tural Science Bulletin , 2014 (1) : 120–123. (in Chinese)
[88] Fernalnde Z, Ssecane S, Merino A. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils[J]. Com-munications in Soil Science and Plant Analysis , 1999, 30 : 1867–1884. DOI:10.1080/00103629909370338
[89] 朱丽霞, 章家恩, 刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境 , 2003, 12 (1) : 102–105. ZHU Li-xia, ZHANG Jia-en, LIU Wen-gao. Review of studies on in-teraction between root exudates and rhizopheric microorganisms[J]. Ecology and Environment , 2003, 12 (1) : 102–105. (in Chinese)
[90] Watt M, McCully M E, Canny M J. Formation and stabilization of rhi-zosheaths of Zea mays L. (effect of soil water content)[J]. Plant Physiol-ogy , 1994, 106 : 179–186.
[91] Sprent J I. Adherence of sand particles to soybean roots under water stress[J]. New Phytology , 1975, 74 : 461–463. DOI:10.1111/nph.1975.74.issue-3
[92] Nambiar E K S. Uptake of Zn65 from dry soil by plants[J]. Plant and Soil , 1976, 44 (1) : 267–271. DOI:10.1007/BF00016978
[93] Czarnes S, Dexter A, Bartoli F. Wetting and drying cycles in the maize rhizosphere under controlled conditions: Mechanics of the root-adher-ing soil[J]. Plant and Soil , 2000, 221 : 253–271. DOI:10.1023/A:1004747323220
[94] León-González de F, Celada-Tornel E, Hidalgo-Moreno C I, et al. Root-soil adhesion as affected by crop species in a volcanic sandy soil of Mexico[J]. Soil Tillage Research , 2006, 90 (1-2) : 77–83. DOI:10.1016/j.still.2005.08.007
[95] Ma W, Li X X, Li C J. Modulation of soil particle size and nutrient availability in the maize rhizosheath[J]. Pedosphere , 2011, 21 (4) : 483–490. DOI:10.1016/S1002-0160(11)60150-1
[96] Smith R J, Hopper S D, Shane M W. Sand-binding roots in Haemodor-aceae: global survey and morphology in a phylogenetic context[J]. Plant and Soil , 2011, 348 (1-2) : 453–470. DOI:10.1007/s11104-011-0874-z