快速检索        
  农业资源与环境学报  2016, Vol. 33 Issue (4): 340-348

文章信息

舒晓晓, 王艳群, 李迎春, 彭正萍, 魏珊珊, 石新丽, 赵延伟
SHU Xiao-xiao, WANG Yan-qun, LI Ying-chun, PENG Zheng-ping, WEI Shan-shan, SHI Xin-li, ZHAO Yan-wei
不同氮肥管理方式对华北粮田N2O排放和作物产量的影响分析
Effects of Different Nitrogen Management Methods on Soil N2O Emission and Crop Yield of Grain Field in North China
农业资源与环境学报, 2016, 33(4): 340-348
Journal of Agricultural Resources and Environment, 2016, 33(4): 340-348
http://dx.doi.org/10.13254/j.jare.2016.0037

文章历史

收稿日期: 2016-02-03
不同氮肥管理方式对华北粮田N2O排放和作物产量的影响分析
舒晓晓1, 王艳群1, 李迎春2, 彭正萍1 , 魏珊珊1, 石新丽1, 赵延伟1    
1. 河北农业大学资源与环境学院/河北省农田生态环境重点实验室, 河北 保定 071001;
2. 中国农业科学院农业环境与可持续发展研究所, 北京 100081
摘要: 通过华北小麦和玉米田已发表文献分析,明确不同施氮量、氮肥基追比及氮素调控措施对土壤N2O排放和作物产量的影响。结果表明:高氮水平下减少氮肥用量并调整基追比有助于减少土壤N2O排放;添加硝化抑制剂双氰胺(DCD)对小麦和玉米产量的提高和土壤N2O的减排效果均较好。兼顾华北粮田N2O减排和作物产量,小麦季推荐合理施氮量167~174 kg·hm-2,基追比1:1,添加DCD,土壤N2O总排放量为 0.31 kg·hm-2,籽粒产量6200 kg·hm-2以上;玉米季推荐合理施氮量177~181 kg·hm-2,基追比2:3~1:2,添加DCD,土壤N2O总排放量1.70 kg·hm-2,籽粒产量9000 kg·hm-2以上。
关键词: 小麦     玉米     氮肥     不同管理方式     N2O排放     产量    
Effects of Different Nitrogen Management Methods on Soil N2O Emission and Crop Yield of Grain Field in North China
SHU Xiao-xiao1, WANG Yan-qun1, LI Ying-chun2, PENG Zheng-ping1 , WEI Shan-shan1, SHI Xin-li1, ZHAO Yan-wei1    
1. College of Resources and Environmental Sciences/Key Laboratory for Farmland Eco-Environment of Hebei, Agricultural University of Hebei, Baoding 071001, China;
2. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract: Through the published literature analysis of wheat and maize field in North China, this study investigated the effects of different management methods of nitrogen(N) application rates, basal/topdressing ratios and N control measures on the soil N2O emission and crop yield. The results showed that reducing N application rates and adjusting basal/top dressing ratios under high N level could decrease soil N2O emissions. Besides, N application with nitrification inhibitor dicyandiamide(DCD) was an effective practice for wheat/maize yield enhancement and soil N2O emission reduction. In order to reduce the soil N2O emission as well as ensure crop yield production in North China, the optimal N application rate of 167~174 kg·hm-2 at basal/top dressing ratio 1:1 with DCD was recommended for wheat production. As a result, soil N2O total emission was 0.31 kg·hm-2 and wheat grain yield reached more than 6200 kg·hm-2. For maize production, the optimal N application rate of 177~181 kg·hm-2 at basal/top dressing ratios 2:3~1:2 with DCD was regarded as the best practice. Soil N2O total emission was 1.70 kg·hm-2 and maize grain yield exceeded 9000 kg·hm-2.
Key words: wheat     maize     nitrogen fertilizer     different management methods     N2O emission     crop yield    

大气中温室气体不断增加是气候变暖及相关环境问题的重要根源。N2O是一种重要的温室气体,在大气中的浓度比工业化前升高20%[1],农业生产中N2O排放占总排放量的84%[2]。由氮肥驱动的N2O排放占土壤总N2O排放量的25%~82%[3]

我国农田作物当季氮肥利用率只有30%左右,不被利用的氮素会对周边土壤、水体和气体产生较大负面影响[4]。华北平原粮食总产量占全国1/7,是我国主要粮食产区[5]。为获高产,农民向农田投入大量氮肥,小麦季高产区农民平均施纯氮为250.5 kg·hm-2,最大可达301.5 kg·hm-2 [6, 7];一般玉米季施氮量为220~270 kg·hm-2,高产区平均纯氮用量500~600 kg·hm-2,远超过作物的氮素需求。该地区N2O累积排放量为2.4~7.1 kg·hm-2,最高可达12.6 kg·hm-2 [8, 9]。针对农田N2O减排的研究主要集中在氮肥用量和种类、耕作措施以及长效肥料、氮素控制剂等方面。众多学者指出,华北地区小麦/玉米轮作中氮肥施用量降至150~200 kg·hm-2,既能保证作物产量又可减少环境污染[10, 11, 12]。胡小康等[13]研究表明,随氮肥用量增加,土壤N2O排放呈直线或曲线增加。氮素调控剂(DCD)[14]、氮肥包膜[15]、纳米增效尿素[16]等均在促进氮肥利用的同时降低了环境污染风险。

目前,针对华北粮田N2O排放虽进行了大量研究,但大部分是特定区域单一试验结果,缺乏系统性。因此,本文通过查阅大量已发表文献,对华北小麦和玉米田不同氮肥用量、氮肥基追比例以及氮素调控剂等对土壤排放N2O和作物产量的影响进行综合分析,试图明确粮田系统较合理的减排N2O和增产作物模式,为华北地区农业安全生产提供科学依据。

1 材料与方法

本文以冬小麦、夏玉米为研究对象,集中在氮肥施用量、氮肥基追比以及氮素调控剂使用方面,查阅和综合分析近期公开发表的国内外期刊和硕博士学位论文。不同文献中的相同指标均换算为统一单位,其中计算N2O减排与作物增产均以各自试验的不施氮肥处理为对照进行核算。采用MATLAB软件进行各指标相关性逐步回归分析。各指标计算公式为:

N2O排放量增加率(%)=(施氮处理N2O排放量-不施氮处理N2O排放量)/不施氮处理N2O排放量×100

作物增产率(%)=(施氮处理作物产量-不施氮处理作物产量)/不施氮处理作物产量×100

单位氮肥N2O排放量(g·kg-1)=施氮处理N2O排放量/纯氮施用量

单位产量N2O排放量(mg·kg-1)=N2O排放量/作物产量

2 结果与分析 2.1 麦田土壤N2O排放及小麦产量 2.1.1 不同氮肥施用量和基追比对土壤N2O排放及小麦产量的影响

收集华北区麦田10个实验42组数据,利用MATLAB软件统计建模,分别以N2O排放总量和产量为因变量,纯氮用量、N2O增排率、单位氮肥N2O排放量、单位产量N2O排放量和增产率为自变量进行逐步回归分析。N2O排放总量为因变量时(图 1),根据残差图逐步去除异常值后保留20组有效数据,拟合出最佳回归方程为Y=0.001 53-2.77e-6 X1-1.83e-5 X2+0.002 16X3+0.006 22X4(r=0.999**),最优拟合下施氮量167 kg·hm-2时的土壤N2O平均排放量为0.31 kg·hm-2,且纯氮用量、N2O增排率、单位氮肥N2O排放量和单位产量N2O排放均会显著影响麦田N2O的总排放量。当产量为因变量时(图 2),根据残差图逐步去除异常值后保留31组有效数据,拟合出最佳回归方程为Y=6 230.89-0.064 3X1+53.127X2-1.054 X3(r=0.757**)。最优拟合下施氮量174 kg·hm-2时的小麦平均产量6 258 kg·hm-2。综合施氮肥土壤减排N2O和小麦增产,以施氮量167~174 kg·hm-2即可保证增产较大,又排放N2O较少。

图中X1为纯氮用量(kg·hm-2);X2为N2O增排率(%);X3为单位氮肥N2O排放量(g·kg-1);X4为单位产量N2O排放量(mg·kg-1);Y为N2O 总排放量(kg·hm-2)(n=42)[17, 18, 19, 20, 21, 22, 23, 24, 25, 26] 图 1 麦田N2O总排放量逐步回归分析 Figure 1 Stepwise regression analysis of soil N2O total emissions in wheat field

根据图 1图 2逐步回归分析确定的小麦较优施氮量范围167~174 kg·hm-2,在施氮量150~225 kg·hm-2 范围内。根据文献报道(表 1),施氮量150~225 kg·hm-2时的N2O增排率为20.5%~176.9%,其中2:3和4:3:3的基追比增排率较大,而1:0和1:1的基追比增排率较小;1:1氮肥基追比的单位氮肥和单位产量N2O排放量均小于其他处理,1:1和2:3的小麦增产率均比1:0大。因此,麦田基追比例1:1减排N2O又有利于增产。

图中X1为纯氮用量(kg·hm-2);X2为N2O增排率(%);X3为单位氮肥N2O排放量(g·kg-1);X4为单位产量N2O排放量(mg·kg-1);Y为N2O 总排放量(kg·hm-2)(n=42)[17, 18, 19, 20, 21, 22, 23, 24, 25, 26] 图 2 小麦产量逐步回归分析 Figure 2 Stepwise regression analysis of wheat yield
表 1 不同氮素基追比对麦田土壤N2O排放和小麦产量的影响 Table 1 Effects of different nitrogen ratios of basal to top dressing on soil N2O emissions and wheat yield
2.1.2 氮素调控剂对麦田土壤N2O排放及小麦产量的影响

表 2可知,施氮量100 kg·hm-2时,包膜比未包膜处理的土壤N2O增排率减少50个百分点,作物增产率高6个百分点;施氮量150 kg·hm-2时,与等量无机氮肥比,添加DCD增排N2O 5.1个百分点,包膜处理无变化,添加DCD比包膜处理单位产量N2O排放量减少0.7 mg·kg-1,小麦增产率高8.1个百分点。施氮量180 kg·hm-2进行氮素调控比225 kg·hm-2氮肥的N2O减排增产效果明显,添加纳米碳比DCD增排28.0个百分点,单位氮肥N2O排放量增加0.9 g·kg-1,单位产量N2O排放量增加17.2 mg·kg-1,小麦增产率低0.7个百分点,说明添加DCD减排增产效果好。施氮量200 kg·hm-2时,包膜比添加DCD土壤N2O增排率增加40.2个百分点,单位氮肥N2O排放量增加0.5 g·kg-1,单位产量N2O排放量增加35.2 mg·kg-1,小麦增产率低8.6个百分点,说明添加DCD较包膜有利于稳产减排。施氮量225 kg·hm-2时,添加DCD比等量氮肥减排N2O 93个百分点且增产率高46.3个百分点。施氮量300 kg·hm-2添加DCD比等量无机氮肥N2O排放下降90.7个百分点,小麦增产率高30.7个百分点,较270 kg·hm-2的包膜处理减排N2O 139.6个百分点且小麦增产率高73.6个百分点,说明DCD能抑制高氮水平下麦田N2O的排放。因此,不同施氮水平下添加DCD均比包膜肥料减排增产效果明显。

表 2 氮素调控剂对麦田土壤N2O排放及小麦产量的影响 Table 2 Effects of different nitrification inhibitors on soil N2O emissions and wheat yield
2.2 玉米田土壤N2O排放及玉米产量 2.2.1 不同施氮量和基追比对土壤N2O排放及玉米产量的影响

玉米田利用MATLAB软件建模,分别以N2O排放总量和产量为因变量,纯氮用量、N2O增排率、单位氮肥N2O排放量、单位产量N2O排放量和增产率为自变量进行逐步回归分析。N2O排放总量为因变量时(图 3),根据残差图逐步去除异常值后保留29组有效数据,拟合出最佳回归方程为Y=-0.001 56+0.001 26X1+0.021 1X2+0.006 67X3(r=0.998**),最优拟合下施氮量181 kg·hm-2时的土壤N2O平均排放量1.70 kg·hm-2,且纯氮用量、单位氮肥N2O排放和单位产量N2O排放均会显著影响土壤N2O的总排放量;当产量为因变量时(图 4),根据残差图逐步去除异常值后保留36组有效数据,拟合出最佳回归方程为Y=8 576.58+7.545X1+54.031X2-6.088X3(r=0.813**),最优拟合下施氮量177 kg·hm-2时玉米平均产量为9 046 kg·hm-2。综合施氮肥减排N2O和玉米增产,以施氮量177~181 kg· hm-2即可保证增产较大,又排放N2O较少。

图中X1为纯氮用量(kg·hm-2);X2为N2O增排率(%);X3为单位氮肥N2O排放量(g·kg-1);Y为N2O 总排放量(kg·hm-2)(n=40)[18, 21, 22, 23, 24, 28, 29, 30, 31, 32] 图 3 玉米田N2O总排放量逐步回归分析 Figure 3 Stepwise regression analysis of soil N2O total emissions in maize yield
图中X1为纯氮用量(kg·hm-2);X2为N2O增排率(%);X3为单位氮肥N2O排放量(g·kg-1);Y为N2O 总排放量(kg·hm-2)(n=40)[18, 21, 22, 23, 24, 28, 29, 30, 31, 32] 图 4 玉米田产量逐步回归分析 Figure 4 Stepwise regression analysis of maize yield

根据图 3图 4逐步回归分析确定的较优玉米施氮量范围177~181 kg·hm-2,在施氮量150~260 kg·hm-2范围内。根据文献报道(表 3),施氮量150~180 kg·hm-2时,基追比2:3比1:0和1:1的单位氮肥N2O排放量增加8.4~13.1 g·kg-1,单位产量N2O排放量增加220.5~270.6 mg·kg-1,无减排增产趋势。施氮量225 kg·hm-2且基追比2:3明显比一次性基施氮肥减少N2O总排放量和单位氮肥N2O排放量,作物可增产38.6%;同等试验中基追比2:3比1:0减排N2O 22.3个百分点,增产3.2个百分点。与施氮240 kg·hm-2基追比1:1比,施氮量210 kg·hm-2和263 kg·hm-2基追比1:2的土壤N2O增排率分别下降530.2、513.1个百分点,单位氮肥和单位产量N2O排放量相近,增产率提高11.4、14.5个百分点,单位氮肥和单位产量N2O排放量相近,增产率提高11.4、14.5个百分点,说明基追比1:2有利于中氮区玉米稳产减排。因此,玉米田氮肥基追比例为2:3~1:2可稳产减排。

表 3 不同氮素基追比对玉米田土壤N2O排放和玉米产量的影响 Table 3 Effects of different nitrogen ratios of basal to top dressing on soil N2O emissions and maize yield
2.2.2 氮素调控剂对土壤N2O排放及玉米产量的影响

笔者收集了玉米田研究最多的氮素调控措施(包膜控释肥料、纳米增效尿素/碳铵和DCD)(表 4)。在纯氮量160 kg·hm-2时,添加DCD N2O增排率降低62.5个百分点且增产率上升7.3个百分点。施氮量180 kg·hm-2时的单位氮肥和单位产量N2O排放量均表现为硫包膜>180+5%DCD>纳米增效尿素>纳米增效碳铵>180+10%DCD,几种调控剂间增产(相差最大25.1个百分点)不及N2O增排(相差最小73个百分点)幅度大,说明该施氮量下添加10%DCD 综合效果较好。施氮量210 kg·hm-2时,包膜处理的N2O增排率比添加DCD 处理高25.9个百分点,单位氮肥N2O排放量增加0.7 g·kg-1,单位产量N2O排放量增加15.8mg·kg-1,增产率下降3.2个百分点;施氮225 kg·hm-2添加DCD 比等量无机氮肥降低N2O增排率111.8个百分点,包膜却增排N2O39.5个百分点,单位氮肥和单位产量N2O排放量均有DCD 减排而包膜处理增排的趋势,玉米增产率DCD 和包膜处理的分别提高47.7、10.5个百分点,说明氮量210 kg·hm-2和225kg·hm-2时,添加DCD 无论减排还是增产均比包膜肥料效果明显。因此,玉米田添加DCD 比其他氮素调控措施增产减排潜力大。

表 4 氮素调控剂对土壤N2O排放及玉米产量的影响 Table 4 Effects of different nitrification inhibitors on soil N2O emissions and maize yield
3 讨论

华北地区小麦和玉米生产中普遍存在氮肥用量高、利用率低、作物养分需求与土壤、肥料养分供应不同步等问题。本文旨在寻找该区合适的施氮水平,提高氮肥利用率,缓解N2O排放。吉艳芝等[17]报道,河北小麦高产且N2O排放量较少的施氮量为150 kg·hm-2。宋利娜等[37]指出,施氮量210 kg·hm-2为华北区小麦优化管理模式,土壤N2O总排放量1.19 kg·hm-2,籽粒产量6 140 kg·hm-2。王艳群等[18]研究表明,225 kg·hm-2的氮素水平下,小麦产量6 258 kg·hm-2,土壤排放N2O1.06 kg·hm-2。本文通过汇总文献资料并进行逐步回归分析,确定小麦最优施氮量为167~174 kg·hm-2,N2O排放0.31 kg·hm-2,产量在6 200 kg·hm-2以上,在稳产下比上述研究更能减排N2O,精确了麦田最佳施氮量范围。刘亚男[24]研究表明,玉米季施氮量392 kg·hm-2时,产量最高为9 461 kg·hm-2,土壤排放N2O3.31 kg·hm-2。蔡祖聪等[38]研究表明,华北潮土上施氮量150 kg·hm-2的玉米产量和环境效应最好,籽粒产量7 633 kg·hm-2且多年产量变异较小。本文拟合玉米最优施氮量为177~181 kg·hm-2,尽管施肥量稍高于蔡祖聪等研究结果,但研究样点涉及区域广,土壤类型多,籽粒产量也在9 000 kg·hm-2以上,增产明显。与茹淑华等[39]在该区6 年定位试验获得的最佳施肥量与产量结果比较接近,但本研究施氮量区间结合N2O减排,概括性更强,范围更集中,便于生产中应用。

该区小麦种植建议选用基追比例为1:1,而玉米季则建议基追比为2:3~1:2,这与该地区的灌溉和降水相关。水分是影响N2O产生和排放的一个重要因素,同时影响养分转化和移动。玉米季雨热同期,利于N2O排放,高水分条件下土壤N2O排放量大于正常水分[40]。玉米生长前期吸收土壤氮素少[41],在水分较好时作物对氮肥依赖性小,增加了氮的移动性;而后期玉米生长旺盛,根系吸收土壤氮素能力增强,不增加后期N2O排放[42]。玉米季将基追比例调至2:3~1:2 既能保证产量又能减排N2O。小麦季,低温和持续干燥的冬季会降低土壤微生物和硝化反硝化细菌的活动,比玉米季受水分影响小,基追比例为1:1 时没有增排N2O。王蔚华等[43]指出,基追比8:2 时,由于前期施肥比例占一生的80%,导致后期缺肥,影响小麦产量;但基追比调整为2:8 时,光合功能不强导致粒重低,只有基追比1:1增加粒重提高产量。因此,基追比1:1 是减少氮肥总量投入、实现氮肥养分资源高效管理的有效途径。

合理氮素调控措施在减少氮肥用量的同时可增产减排N2O。研究发现在华北小麦玉米种植区添加DCD可使小麦季N2O排放量下降49%[44],小麦/玉米轮作季降低23.1%~31.1%,小麦增产16.7%~24.6%,玉米增产29.8%~34.5%[16, 18],极少发现减产[45]。本文综合分析华北区小麦/玉米粮田增施DCD有利于减排增产,这可能是由于DCD 和尿素混合施入土壤后,能通过抑制氨氧化菌或者相关酶的活性,有效延缓NH+4 -N 氧化为NO3--N的进程,使土壤中的NH4+-N保持较高水平,延长氮肥肥效,从而减少N2O的排放,提高作物产量[46]

4 结论

通过逐步回归分析汇总文献资料,兼顾小麦/玉米田N2O减排和2 种作物产量,在氮肥管理中,小麦季推荐合理施氮量167~174 kg·hm-2,N2O总排放量降至0.31 kg·hm-2,产量6 200 kg·hm-2以上;玉米季,推荐合理施氮量177~181 kg·hm-2,N2O总排放量降至1.70 kg·hm-2,产量9 000 kg·hm-2以上。同时,在该区氮肥合理用量基础上添加DCD 调控均能显著降低小麦和玉米田N2O排放,且调整基追比也是降低N2O排放的有效途径,但两季作物比例不同,小麦季基追比例1:1 效果较好,玉米季将基追比例调至2:3~1:2可增产减排。

参考文献
[1] IPCC. Working groupⅠcontribution to the IPCC fifth assessment report:Climate Change 2013:The physical science basis[M]. Cambridge:Cambridge University Press, 2013.
[2] 王孟雪, 张忠学. 适宜节水灌溉模式抑制寒地稻田N2O排放增加水稻产量[J]. 农业工程学报, 2015, 31(15):72-79. WANG Meng-xue, ZHANG Zhong-xue. Optimal water-saving irrigation mode reducing N2O emission from rice paddy field in cold region and increasing rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15):72-79. (in Chinese)
[3] Eichner M J. Nitrous oxide emissions from fertilized soils:Summary of available data[J]. Journal of Environmental Quality, 1990, 19:272-280.
[4] 李鑫, 巨晓棠, 张丽娟, 等. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J]. 应用生态学报, 2008, 19(1):99-104. LI Xin, JU Xiao-tang, ZHANG Li-juan, et al. Effect of different fertilization modes on soil ammonia volatilization and nitrous oxide emission[J]. Chinese Journal of Applied Ecology, 2008, 19(1):99-104. (in Chinese)
[5] 孙艳丽, 陆佩玲, 李俊, 等. 华北平原冬小麦/夏玉米轮作田土壤N2O通量特征及影响因素[J]. 中国农业气象, 2008, 29(1):1-5. SUN Yan-li, LU Pei-ling, LI Jun, et al. Characteristics of soil N2O flux in a winter wheat-summer maize rotation system in north China plain and analysis of influencing factors[J]. Chinese Journal of Agrometeorology, 2008, 29(1):1-5. (in Chinese)
[6] 杨军芳, 周晓芬, 贾良良. 河北省太行山前平原小麦养分资源管理现状分析与评价[J]. 河北农业科学, 2012, 16(7):51-56. YANG Jun-fang, ZHOU Xiao-fen, JIA Liang-liang. Analysis and evaluation of the wheat nutrient resource management in the piedmont plain of Taihang mountains of Hebei province[J]. Journal of Hebei Agricultural Sciences, 2012, 16(7):51-56. (in Chinese)
[7] 崔振岭. 华北平原冬小麦-夏玉米轮作体系优化氮肥管理——从田块到区域尺度[D]. 北京:中国农业大学, 2005. CUI Zhen-ling. Optimization of the nitrogen fertilizer management for winter wheat-summer maize rotation system in the north China plain:from field to regional scale[D]. Beijing:China Agricultural University, 2005. (in Chinese)
[8] 裴淑玮, 张圆圆, 刘俊锋, 等. 华北平原玉米-小麦轮作农田N2O交换通量的研究[J]. 环境科学, 2012, 33(10):3641-3646. PEI Shu-wei, ZHANG Yuan-yuan, LIU Jun-feng, et al. N2O exchange fluxes from wheat-maize crop rotation system in the north China plain[J]. Environmental Science, 2012, 33(10):3641-3646. (in Chinese)
[9] Ding W X, Cai Y, Cai Z C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China plain[J]. Science of the Total Environment, 2007, 373(2-3):501-511.
[10] Chen X P, Cui Z L, Vitousek P M, et al. Integrated soil-crop system management for food security[J]. Proceeding of the National Academy of Sciences, 2011, 108(16):6399-6404.
[11] Cui Z L, Chen X P, Miao Y X, et al. On-farm evaluation of the improved soil N-based nitrogen management for summer maize in North China plain[J]. Agronomy Journal, 2008, 100(3):517-525.
[12] Ju X T, Xing G X, Chen X P, et al. Reducing environment risk by improving N management in intensive Chinese agricultural systems[J]. Proceeding of the National Academy of Sciences, 2009, 106(9):3041-3046.
[13] 胡小康, 黄彬香, 苏芳, 等. 氮肥管理对夏玉米土壤CH4和N2O排放的影响[J]. 中国科学(化学), 2011, 41(1):117-128. HU Xiao-kang, HUANG Bin-xiang, SU Fang, et al. Effects of nitrogen management on methane and nitrous oxide emissions from summer maize soil in North China plain[J]. Scientia Sinica Chimica, 2011, 41(1):117-128. (in Chinese)
[14] 闫湘, 金继运, 何萍. 提高肥料利用率技术研究进展[J]. 中国农业科学, 2008, 41(2):450-459. YAN Xiang, JIN Ji-yun, HE Ping. Recent advances in technology of increasing fertilizer use efficiency[J]. Scientia Agricultura Sinica, 2008, 41(2):450-459. (in Chinese)
[15] 纪洋, 刘刚, 马静, 等. 控释肥施用对小麦生长期N2O排放的影响[J]. 土壤学报, 2012, 49(3):527-534. JI Yang, LIU Gang, MA Jing, et al. Effect of controlled-release fertilizer on nitrous oxide emission during the wheat growing period[J]. Acta Pedologica Sinica, 2012, 49(3):527-534. (in Chinese)
[16] LIU Y N, LI Y C, PENG Z P, et al. Effects of different nitrogen fertilizer management practices on wheat yields and N2O emissions from wheat fields in North China[J]. Journal of Integrative Agriculture, 2015, 14(6):1184-1191.
[17] 吉艳芝, 巨晓棠, 刘新宇, 等. 不同施氮量对冬小麦田氮去向和气态损失的影响[J]. 水土保持学报, 2010, 24(3):113-119. JI Yan-zhi, JU Xiao-tang, LIU Xin-yu, et al. Impact of different nitrogen application on nitrogen movement and gaseous loss of winter wheat fields[J]. Journal of Soil and Water Conservation, 2010, 24(3):113-119. (in Chinese)
[18] 王艳群, 李迎春, 彭正萍, 等. 氮素配施双氰胺对冬小麦-夏玉米轮作系统N2O排放的影响及效益分析[J]. 应用生态学报, 2015, 26(7):1999-2006. WANG Yan-qun, LI Ying-chun, PENG Zheng-ping, et al. Effects of dicyandiamide combined with nitrogen fertilizer on N2O emission and economic benefit in winter wheat and summer maize rotation system[J]. Chinese Journal of Applied Ecology, 2015, 26(7):1999-2006. (in Chinese)
[19] 胡腾. 黄土高原南部冬小麦-夏休闲种植体系温室气体排放与减排措施研究[D]. 杨凌:西北农林科技大学, 2014. HU Teng. Study on GHG emission and mitigation in winter-summer fallow region of south loess plateau[D]. Yangling:Northwest Agriculture and Forestry University, 2014. (in Chinese)
[20] Liu C, Wang K, Zheng X. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in Northern China[J]. Biogeosciences, 2012, 9(2):839-850.
[21] 王秀斌. 优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[D]. 北京:中国农业科学院, 2009. WANG Xiu-bin. Nitrogen cycling and balance in winter wheat-summer corn rotation system under optimized nitrogen management[D]. Beijing:Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[22] 王朝东. 硝化抑制剂DCD与不同施氮量对粮田系统氮素分布及N2O排放的影响[D]. 保定:河北农业大学, 2013. WANG Chao-dong. Effects of dicyandiamile and different fertilizer levels on nitrogen distribution and N2O emissions in grain system[D]. Baoding:Agriculture of University of Hebei, 2013. (in Chinese)
[23] 山楠. 京郊小麦-玉米轮作体系氮素利用与损失研究[D]. 保定:河北农业大学, 2014. SHAN Nan. Nitrogen utilization and loss in winter wheat-summer maize rotation system of Beijing suburb[D]. Baoding:Agriculture of University of Hebei, 2014. (in Chinese)
[24] 刘亚男. 冬小麦/夏玉米轮作系统不同氮肥管理方式的生物效应及N2O排放特征研究[D]. 保定:河北农业大学, 2015. LIU Ya-nan. Effects of biological and N2O emissions under different nitrogen fertilizer management practices in wheat-maize rotation[D]. Baoding:Agriculture of University of Hebei, 2015. (in Chinese)
[25] 张贺, 郭李萍, 谢立勇, 等. 不同管理措施对华北平原冬小麦田土壤CO2和N2O排放的影响研究[J]. 土壤通报, 2013, 44(3):654-659. ZHANG He, GUO Li-ping, XIE Li-yong, et al. The effect of management practices on the emission of CO2 and N2O from the winter wheat field in North China plain[J]. Journal of Soil Science, 2013, 44(3):654-659. (in Chinese)
[26] 王海云, 邢光熹. 不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J]. 农业环境科学学报, 2009, 28(12):2631-2636. WANG Hai-yun, XING Guang-xi. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J]. Journal of Agro-Environment Science, 2009, 28(12):2631-2636. (in Chinese)
[27] HU Xiao-kang, SU Fang, JU Xiao-tang, et al. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes[J]. Environmental Pollution, 2013, 176:198-207.
[28] 刘慧颖, 华利民, 张鑫. 不同施氮方式对玉米产量及N2O排放的影响[J]. 农业资源与环境学报, 2013, 30(5):76-80. LIU Hui-ying, HUA Li-min, ZHANG Xin. Effect of different N application methods on yield, N2O emission of maize[J]. Journal of Agricultural Resources and Environment, 2013, 30(5):76-80. (in Chinese)
[29] 杨黎. 辽西地区春玉米农田N2O排放特征与固碳减排机制[D]. 北京:中国农业科学院, 2013. YANG Li. Mechenism of mitigation and characteristics of N2O emissions from typical spring maize fields in western Liaoning Province[D]. Beijing:Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[30] 马银丽, 吉艳芝, 李鑫, 等. 施氮水平对小麦-玉米轮作体系氨挥发与氧化亚氮排放的影响[J]. 生态环境学报, 2012, 21(2):225-230. MA Yin-li, JI Yan-zhi, LI Xin, et al. Effects of N fertilization rates on the NH3 volatilization and N2O emissions from the wheat-maize rotation system in North China plain[J]. Ecology and Environmental Sciences, 2012, 21(2):225-230. (in Chinese)
[31] 李燕青, 唐继伟, 车升国, 等. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响[J]. 中国农业科学, 2015, 48(21):4381-4389. LI Yan-qing, TANG Ji-wei, CHE Sheng-guo, et al. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the North China plain[J]. Scientia Agricultura Scinica, 2015, 48(21):4381-4389. (in Chinese)
[32] 刘运通. 不同施肥措施下玉米地温室气体排放特点分析与模拟研究[D]. 北京:中国农业科学院, 2008. LIU Yun-tong. Study on the characteristics of greenhouse gases flux and its simulation in maize field under different fertilization management[D]. Beijing:Chinese Academy of Agricultural Sciences, 2008. (in Chinese)
[33] 李娜. 耕作方式和包膜尿素对夏玉米田土壤N2O排放的影响[D]. 泰安:山东农业大学, 2014. LI Na. Effects of tillage practice and poly-coated urea on N2O from summer maize field[D]. Tai'an:Shandong Agricultural University, 2014. (in Chinese)
[34] 吴得峰, 姜继韶, 高兵, 等. 添加DCD对雨养区春玉米产量、氧化亚氮排放及硝态氮残留的影响[J]. 植物营养与肥料学报, 2015, 86(4):10-20. WU De-feng, JIANG Ji-shao, GAO Bing, et al. Effects of DCD addition on grain yield, N2O emission and residual nitrate-N of spring maize in rain-fed agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2015, 86(4):10-20. (in Chinese)
[35] 李超. 不同施肥处理对春玉米田N2O排放的影响及经济效益分析[D]. 北京:中国农业科学院, 2013. LI Chao. Effects and economic benefits analysis of different fertilizer treatments on N2O emissions from spring corn field[D]. Beijing:Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[36] 周鹏, 李玉娥, 万运帆, 等. 华北春玉米田施用纳米增效氮肥的增产减排作用初探[J]. 中国农业气象, 2013, 34(5):532-537. ZHOU Peng, LI Yu-e, WAN Yun-fan, et al. Preliminary research on the effects of applying nano-synergism nitrogen fertilizer on nitrous oxide emission and yield of spring corn in North China plain[J]. Chinese Journal of Agrometeorology, 2013, 34(5):532-537. (in Chinese)
[37] 宋利娜, 张玉铭, 胡春胜, 等. 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应[J]. 中国生态农业学报, 2013, 21(3):297-307. SONG Li-na, ZHANG Yu-ming, HU Chun-sheng, et al. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of North China plain[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3):297-307. (in Chinese)
[38] 蔡祖聪, 钦绳武. 华北潮土长期试验中的作物产量、氮肥利用率及其环境效应[J]. 土壤学报, 2006, 43(6):886-890. CAI Zu-cong, QIN Sheng-wu. Corp yield, N use efficiency and environmental impact of a long-term fertilization experiment in fluvor aquic soil in North China[J]. Acta Pedologica Sinica, 2006, 43(6):886-890. (in Chinese)
[39] 茹淑华, 张国印, 孙世友, 等. 施氮量对冬小麦-夏玉米轮作体系中土壤硝态氮分布和累积的影响[J]. 华北农学报, 2011, 26:85-89. RU Shu-hua, ZHANG Guo-yin, SUN Shi-you, et al. Effect of nitrogen application rate on nitrate nitrogen distribution and accumulation in soils in wheat-maize rotation system[J]. Acta Agriculturae Boreali-Sinica, 2011, 26:85-89. (in Chinese)
[40] 侯爱新, 陈冠雄, 吴杰. 不同种类氮肥对土壤释放的N2O的影响[J]. 应用生态学报, 1998, 9(2):176-180. HOU Ai-xin, CHEN Guan-xiong, WU Jie. Effect of different nitrogen fertilizers on N2O emission from soil[J]. Chinese Journal of Applied Ecology, 1998, 9(2):176-180. (in Chinese)
[41] 戴明宏, 陶洪斌, 王利纳, 等. 华北平原春玉米季土壤硝态氮动态及氮素矿化的特征[J]. 水土保持学报, 2008, 22(3):76-81. DAI Ming-hong, TAO Hong-bin, WANG Li-na, et al. Characteristics of soil NO3--N changing and nitrogen mineralization during spring maize seasons in the North China plain[J]. Journal of Soil and Water Conservation, 2008, 22(3):76-81. (in Chinese)
[42] 杨兰芳, 蔡祖聪. 施氮和玉米生长对土壤氧化亚氮排放的影响[J]. 应用生态学报, 2005, 16(1):100-104. YANG Lan-fang, CAI Zong-cong. Effects of N application and maize growth on N2O emission from soil[J]. Chinese Journal of Applied Ecology, 2005, 16(1):100-104. (in Chinese)
[43] 王蔚华, 郭文善, 封超年, 等. 氮肥运筹对小麦花后剑叶衰老及籽粒发育的影响[J]. 扬州大学学报, 2002, 23(4):61-65. WANG Wei-hua, GUO Wen-shan, FENG Chao-nian, et al. Effects of nitrogen application methods on flag leaf senescence after anthesis and grain development in wheat[J]. Journal of Yangzhou University, 2002, 23(4):61-65. (in Chinese)
[44] Majumdar D, Pathak H, Kumar S, et al. Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors[J]. Agriculture, Ecosystems and Environment, 2002, 91:283-293.
[45] Mahmood T, Ali R, Latif Z, et al. Dicyandiamide increases the fertilizer N loss from an alkaline calcareous soil treated with 15N-labelled urea under warm climate and under different crops[J]. Biology and Fertility of Soils, 2011, 47:619-631.
[46] Di H J, Cameron K C, Shen J P, et al. A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia oxidizing bacteria and archaea[J]. Soil Use and Management, 2009, 25:454-461.