文章信息
- 史昊先, 高晓霞, 于景丽, 赵吉
- SHI Hao-xian, GAO Xiao-xia, YU Jing-li, ZHAO Ji
- 外源氮添加对湿地土壤N2O排放量的影响
- Effect of Exogenous Nitrogen Addition on Nitrous Oxide N 2 O Emissions from Wetland Soil
- 农业资源与环境学报, 2014, 31(5): 456-460
- Journal of Agricultural Resources and Environment, 2014, 31(6): 513-520
- http://dx.doi.org/10.13254/j.jare.2014.0180
-
文章历史
- 收稿日期:2014-07-14
2. 内蒙古大学环境与资源学院;
3. 中美生态能源及可持续性科学内蒙古研究中心
2. College of Environment and Resources,Inner Mongolia U- niversity,Hohhot 010021,China;
3. Sino-US Center for Conservation,Energy Science in Inner Mongolia,Hohhot 010021,China
氧化亚氮(N2O)是继CO2和CH4之后的第三大温室气体[1]。中国化学氮肥年消耗量约占全球的25%,农业生产造成N2O 排放量正随氮肥使用量呈现指数增长趋势。中国是《京都议定书》缔约国,N2O 减排的研究成为举世瞩目的焦点问题。
国内外大量报道了农田、森林和草地等陆地系统氮添加对土壤N2O 排放量的影响[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]和自然湿地土壤N2O 排放的时空异质性[16, 17, 18, 19, 20, 21, 22, 23, 24, 25],鲜见外源氮添加对自然湿地土壤N2O 排放的影响[26]。内蒙古高原半干旱区农牧交错带湿地萎缩和次生盐碱化问题严重,而化肥和牲畜粪尿等氮源物质的大量输入可能导致土壤氮素损失或N2O的排放风险值增加[27, 28]。
本论文通过室内控制温度湿度,研究无机氮和有机氮输入对N2O排放量的影响,分析不同外源氮素添加量与N2O 排放量对应的剂量效应关系,搞清湿地土壤驱动N2O 排放的氮源类型,为减少内蒙古高原区湿地N2O 的排放提供科学依据。 1 材料与方法 1.1 研究区概况
内蒙古高原小黑河水系呼和浩特市南湖段,地理坐标是N40°46′47″,E111°39′47″。该区气候干旱(300~400 mm),地下水位较浅(1~3 m),地表积盐现象明显,植被主要为耐盐耐湿的垂柳、旱柳、杞柳、怪柳等。采集的淹水区湿地土壤,质地粘重,土壤pH值8.3,全盐含量9.8 g·kg-1,有机质3.6 g·kg-1,碱解氮32.0 mg·kg-1。 1.2 试验设计
充分混匀湿地土壤后按每瓶25.0 g分装到39 个250 mL 的集气瓶中。选择1 个不加任何氮源的蒸馏水作为空白对照组,3个外加氮源组:(1 )尿素水溶液;(2)硝酸铵水溶液;(3)尿素与硝酸铵1:1 配比的水溶液,每个氮源组均设置为1.0、2.0、3.0、4.0 g·L-1,每个剂量均设置3 个重复。光照培养箱内保持湿地土壤22℃恒温恒湿,培养2 周。 1.3 N2O的测定和计算方法
采集适量的气体用Agilent 7890A 气相色谱仪检测N2O 的浓度。待测气体浓度:Cs(mg·L-1)=As×C0/A0其中As为待测样品的峰面积;C0 为标气浓度(1.0 mg·L-1);A0为标气的峰面积。N2O 排放量(mg·m-3)=(M/22.4)×Cs(mg·L-1),其中M为N2O的分子质量。 1.4 数据的统计分析
采用Excel 2007 和SPSS 13.0 软件对不同处理3个重复对应的N2O 排放量进行数据处理、单因素方差分析和回归分析,并用最小显著差异法(LSD)对不同处理间各指标进行多重比较。用Origin Lab 8.5 对不同外加氮源处理与N2O 排放量的变化关系进行图形绘制。 2 结果与分析 2.1 尿素添加与湿地土壤N2O 排放量间的量效关系
由表 1可知,尿素添加组N2O排放量均高于空白对照组4.4 mg·m-3,除处理组3 添加2.0 g·L-1 剂量组差异显著(P<0.05)外,其他剂量组与对照组差异不显著(P>0.05),说明尿素并非湿地土壤利用的主要氮源类型。随着尿素添加量的增加土壤N2O 的排放量呈现先增后减的单峰变化趋势,当尿素添加量为2.0 g·L-1时出现了N2O 排放量的峰值10.6 mg·m-3。
![]() |
由表 1 可知,NH4NO3 任一剂量组N2O 排放量显著高于对照组4.4 mg·m-3(P<0.01),说明NH4NO3 是湿地土壤利用的主要氮源类型。随着NH4NO3添加量的增加N2O 排放量呈持续上升趋势,呈现线性正相关性关系(R2=0.94)。 2.3 尿素与硝酸铵按1:1 配比混合添加与湿地土壤N2O 排放量间的量效关系
由表 1可知,尿素与NH4NO3按照1:1配比添加同样剂量的氮素时,N2O 排放量极显著高于对照组(P<0.01)。随着氮添加量的不断增加土壤N2O 的排放量亦呈现先增后减的单峰变化趋势,在氮素添加量为3.0 g·L-1时出现了N2O排放量的峰值229.0mg·m-3。 2.4 三组外加氮源与湿地土壤N2O排放量间量效关系的比较分析
对比3 组氮源类型,湿地土壤中添加尿素与NH4NO3复合肥组N2O 排放量(71.3~229.0 mg·m-3)高于单独NH4NO3 组(32.6~111.0 mg·m-3),明显高于尿素组(5.9~10.6 mg·m-3)。说明尿素与NH4NO3复合肥组是湿地土壤最易利用的氮源类型,单独NH4NO3组是较易利用的氮源类型,而尿素是湿地土壤最不易利用的氮源类型。 3 讨论
土壤产生N2O除纯化学脱氮[29]外,主要是微生物驱动的脱氮过程,包括厌氧/好氧反硝化作用、好氧氨氧化和硝化作用等[29, 30, 31]。其中,好氧硝化将(NH4+/NH3)逐级氧化和厌氧反硝化将(NO3-/NO2-)逐级还原过程被认为是农田土壤释放N2O的重要代谢途径[29, 30]。土壤质地、溶解氧含量及底物类型和浓度等是影响这些脱氮过程的主要因素[29, 30, 31]。 3.1 湿地土壤驱动N2O 排放的氮源类型
本研究湿地土壤中添加尿素与NH4NO3复合肥组N2O 排放量或单独NH4NO3 组均明显高于尿素组。其中湿地土壤添加尿素不能引起N2O 排放量显著增加的结果和Zaman等[32]研究湿地的结果一致。原因之一是尿素中CONH2-N 不能被微生物直接利用产生N2O,需经脲酶水解变成NH4+/NH3后才能通过微生物的氨氧化和硝化作用形成N2O;原因之二是湿地土壤粘重、淹水条件下土壤通气性差,脲酶活性受到抑制不利于尿素中CONH2-N 向NH4+-N 转化,也不利于微生物的好氧氨氧化产生N2O,只能通过土壤中自身存在的NO2--N 与NH4+-N 结合释放少量的N2O。湿地土壤添加NH4NO3 比添加尿素更有利于N2O 的排放,原因可能是NH4NO3 中的NO3--N 为湿地土壤微生物反硝化优先利用的底物,逐级被还原产生较多的N2O,同时NH4NO3 中的NH4+-N 与反硝化过程积累的中间产物NO2--N 结合产生更多的N2O。Thornton 等[33]发现肥料类型强烈影响黄土土壤N2O的排放,NH4+-N比尿素-N 更容易产生N2O,这和本研究NH4NO3 中的NH4+-N 比尿素中CONH2-N 更容易被利用产生较多N2O 的结果相一致。Galdos等[34]研究发现巴西甘蔗林土壤施用NH4NO3 比尿素释放的N2O 少,与本研究结果恰恰相反。原因可能是本研究湿地土壤N2O 产生途径以微生物的逐级厌氧反硝化和化学反硝化[29]为主,而甘蔗林土壤以微生物的好氧氨氧化和硝化途径产生N2O为主[29, 30]。本研究发现尿素与NH4NO3 复合肥组中的NO3--N 和NH4+-N 仍是湿地土壤厌氧微生物反硝化优先利用的底物,且添加尿素形成的NH4+-N 刺激NO3--N 通过反硝化作用产生相对较多的N2O和中间产物NO2--N,加速了与NH4+-N 结合产生更多的N2O。Calvo 等[35] 发现特定条件下尿素与NH4NO3 复合肥有利于N2O 的释放,间接验证了本研究湿地土壤尿素与NH4NO3 复合肥组比单一的尿素组或NH4NO3 组更有利于N2O排放的结果。 3.2 氮素添加量对土壤N2O排放的影响
本研究发现淹水还原条件下湿地土壤添加尿素虽不容易产生N2O,但当尿素浓度不断增加,N2O 的排放量呈现先增后减的变化趋势,说明在环境因素相对稳定的条件下,底物浓度是驱动N2O 排放的关键要素。Mosier 等[36]研究了不同剂量NH4NO3对N2O 排放的影响,发现N2O 的增加量与NH4NO3的施用量呈现线性关系。这和本研究湿地N2O 排放量与NH4NO3添加量呈线性正相关性关系的结果相一致,符合Kim等[37]提出的线性关系。本研究单独添加尿素组或尿素与NH4NO3复合肥组均呈现先增后减的变化趋势,符合Kim等[37]提出的非线性关系。 4 结论
外加氮源组N2O 排放量(5.9~229.0 mg·m-3)总高于无氮素添加对照组的N2O 排放量(4.4 mg·m-3)。氮素形态及用量是驱动淹水湿地土壤N2O 排放量的关键因素,推测淹水土壤NH4NO3中NO3--N是最易转化成N2O 的氮素类型,NH4+-N 次之;尿素中CONH2-N不易转化为N2O,具有滞后效应。尿素添加组及尿素与硝酸铵复合组土壤N2O 的排放量均随着氮素添加量的增加呈先增后减的单峰变化趋势,硝酸铵添加组N2O 排放量则随着氮素添加量的增加呈持续上升趋势。淹水湿地土壤尿素配合NH4NO3更有利于N2O 的排放,表现为添加尿素与硝酸铵复合组(71.3~229.0mg·m-3)>单独硝酸铵组(32.6~111.0 mg·m-3)>单独尿素组(5.9~10.6 mg·m-3)。
[1] | 马晓菲, 谢文霞, 赵全升. 外源氮输入对土壤 N2O 释放的影响研究进展[J]. 环境科学与技术, 2010, 33 (12): 453-457.MA Xiao-fei, XIE Wen-xia, ZHAO Quan-sheng. Progress on effects ofexogenous nitrogen input on N2O emission from soil[J]. EnvironmentalScience & Technology, 2010, 33 (12): 453-457. (in Chinese) |
[2] | 张岳芳, 周 炜, 王子臣, 等. 氮肥施用方式对油菜生长季氧化亚氮排放的影响[J]. 农业环境科学学报, 2013, 32 (8): 1690-1696.ZHANG Yue-fang, ZHOU Wei, WANG Zi-chen, et al. Effect of nitro-gen fertilizer application modes on nitrous oxide emissions during grow-ing season of oilseed rape(Brassicanapus) [J]. Journal of Agro-Environ-ment Science, 2013, 32 (8): 1690-1696.(in Chinese) |
[3] | 黄红英, 曹金留, 靳红梅, 等. 猪粪沼液施用对稻麦轮作系统土壤氧化亚氮排放的影响[J]. 农业环境科学学报, 2012, 30 (11): 2353-2361.HUANG Hong-ying, CAO Jin-liu, JIN Hong-mei, et al. Influence ofapplication of digested pig slurry on nitrous oxide emission under rice-wheat rotation system[J]. Journal of Agro-Environment Science, 2012,30 (11): 2353-2361. (in Chinese) |
[4] | 马二登, 马 静, 徐 华, 等. 追肥时间对小麦拔节-成熟期氧化亚氮排放的影响[J]. 土壤学报, 2011, 48 (5): 971-978.MA Er-deng, MA Jing, XU Hua, et al. Nitrous oxide emissions fromwheat field at wheat jointing-maturing stage as affected by timing of top-dressing[J]. ActaPedologicaSinica, 2011, 48 (5): 971-978. (in Chinese) |
[5] | 杜亚琴, 郑丽行, 樊小林. 三种控释肥在赤红壤中的氧化亚氮排放[J]. 应用生态学报, 2011, 22 (9): 2370-2376.DU Ya-qin, ZHENG Li-xing, FAN Xiao-lin. Effect of applying con-trolled release fertilizers on N2O emission from a lateritic red soil[J]. Chi-nese Journal of Applied Ecology, 2011, 22 (9): 2370-2376. (in Chinese) |
[6] | 王 建, 诸葛玉平, 彭福田, 等. 袋控肥对土壤氨挥发, 氧化亚氮和二氧化碳排放的影响[J]. 水土保持学报, 2013, 27 (6): 294-297.WANG Jian, ZHUGE Yu-ping, PENG Fu-tian, et al. Effect of paperpackage fertilization on soil ammonia volatilization, nitrous oxide andcarbondioxide emission[J]. Journal of Soil and Water Conservation, 2013,27 (6): 294-297.(in Chinese) |
[7] | Smith K A, Bouwman L, Braatz B. Nitrous oxide: Direct emissions fromagricultural soils [C]//Background paper for IPCC workshop on goodpractice in inventory preparation: Agricultural sources of methane andnitrous oxide, 1999: 24-26. |
[8] | Davidson E A. The contribution of manure and fertilizer nitrogen to at-mospheric nitrous oxide since 1860[J]. Nature Geoscience, 2009, 2 (9):659-662. |
[9] | Wolf B, Zheng X, Garbageman N, et al. Grazing-induced reduction ofnaturalnitrousoxidereleasefromcontinental steppe[J].Nature,2010,464(7290): 881-884. |
[10] | Kim D G, Rafique R, Leahy P, et al. Estimating the impact of changingfertilizer application rate, land use, and climate on nitrous oxide emis-sions in Irish grasslands[J]. Plant and Soil, 2014, 374 (1-2): 55-71. |
[11] | Reay D S, Davidson E A, Smith K A, et al. Global agriculture and ni-trous oxide emissions[J]. Nature Climate Change, 2012, 2 (6): 410-416. |
[12] | Hoben J P, Gehl R J, Millar N, et al. Nonlinear nitrous oxide(N2O)re-sponse to nitrogen fertilizer in on-farm corn crops of the US Midwest[J].Global Change Biology, 2011, 17 (2): 1140-1152. |
[13] | Das S, Adhya T K. Effect of combine application of organic manure andinorganic fertilizer on methane and nitrous oxide emissions from a trop-ical flooded soil planted to rice[J]. Geoderma, 2014, 213: 185-192. |
[14] | Singh J, Krishnamurti A, Bolan N S, et al. Impact of urease inhibitor onammonia and nitrous oxide emissions from temperate pasture soil coresreceivingureafertilizerandcattleurine[J]. Science of the Total Environ-ment, 2013, 465: 56-63. |
[15] | Pelster D E, Larouche F, Rochette P, et al. Nitrogen fertilization but notsoil tillage affects nitrous oxide emissions from a clay loam soil under amaize soybean rotation[J]. Soil and Tillage Research, 2011, 115: 16-26. |
[16] | 李 勇, 刘 敏, 陆敏, 等. 崇明东滩芦苇湿地氧化亚氮排放[J].环境科学学报, 2010, 30 (12): 2526-2534.LI Yong, LIU Min, LU Min, et al. Phragmites australis effects on N2O e-mission in the Chongming eastern tidal flat[J]. Acta Scientiae Circum-stantiae, 2010, 30 (12): 2526-2534.(in Chinese) |
[17] | 袁淑方, 王为东. 太湖流域源头溪流氧化亚氮 (N2O) 释放特征[J]. 生态学报, 2012, 32 (20): 6279-6288.YUAN Shu-fang, WANG Wei-dong. Characteristics of nitrous oxide(N 2O)emission from a headstream in the upper Taihu Lake Basin[J]. ActaEcologicaSinica, 2012, 32 (20): 6279-6288.(in Chinese) |
[18] | 王德宣. 若尔盖高原泥炭沼泽二氧化碳, 甲烷和氧化亚氮排放通量研究[J]. 湿地科学, 2010, 8 (3): 220-224.WANG De-xuan. Emission fluxes of carbon dioxide, methane and ni-trous oxide from peat marsh in Zoig Plateau[J]. Wetland Science, 2010,8 (3): 220-224.(in Chinese) |
[19] | Zhang Q Y, Li F D, Tang C Y. Quantifying of soil denitrification poten-tial inawetlandecosystem,ochiexperiment site,Japan[J].Journalof Re-sources and Ecology, 2012, 3 (1): 93-96. |
[20] | 胡智强. 闽江河口沼泽湿地 3 种温室气体通量日进程特征[D]. 福州: 福建师范大学, 2011.HU Zhi-qiang. Diurnal variations of greenhouse gas fluxes from themarsh in the Min River estuary[D]. Fuzhou: Fujian Normal University,2011.(in Chinese) |
[21] | 孙巧奇. 中国嫩江流域湿地温室气体通量变化及其影响因素研究[D]. 北京: 北京林业大学, 2013.SUN Qiao-qi. The study of greenhouse gas flux and its influencing fac-tors in the Nen River Valley wetlands of China[D]. Beijing: Beijing Fo-restry University, 2013. (in Chinese) |
[22] | 谢文霞, 赵全升, 张 芳, 等. 胶州湾河口湿地秋冬季 N2O 气体排放通量特征[J]. 地理科学, 2011, 31 (4): 464-469.XIE Wen-xia, ZHAO Quan-sheng, ZHANG Fang, et al. Characteristicsof N 2 O flux in estuary wetland of Jiaozhou Bay in autumn and winter[J]. ScientiaGeographicaSinica, 2011, 31 (4): 464-469.(in Chinese) |
[23] | Lind L P D, Audet J, Tonderski K, et al. Nitrate removal capacity andnitrous oxide production in soil profiles of nitrogen loaded riparian wet-lands inferred by laboratory microcosms[J]. Soil Biology and Biochem-istry, 2013, 60: 156-164. |
[24] | Scaroni A E, Ye S, Lindau C W, et al. Nitrous oxide emissions fromsoils in louisiana忆s Atchafalaya River Basin[J]. Wetlands, 2014: 34 (3):545-554. |
[25] | J.rgensen C J, Elberling B. Effects of flooding-induced N2O produc-tion, consumption and emission dynamics on the annual N2O emissionbudget inwetlandsoil[J].Soil BiologyandBiochemistry,2012,53:9-17. |
[26] | Masaka J, Nyamangara J, Wuta M. Nitrous oxide emissions from wet-land soil amended with inorganic and organic fertilizers[J]. Archives ofAgronomy and Soil Science, 2014, 60 (10): 1-25. |
[27] | Asgedom H, Tenuta M, Flaten D N, et al. Nitrous oxide emissions froma clay soil receiving granular urea formulations and dairy manure[J]. A-gronomy Journal, 2014, 106: 1-13. |
[28] | Das S, Adhya T K. Effect of combine application of organic manure andinorganic fertilizer on methane and nitrous oxide emissions from a trop-ical flooded soil planted to rice[J]. Geoderma, 2014, 213: 185-192. |
[29] | 蔡延江, 丁维新, 项 剑. 土壤 N2O 和 NO 产生机制研究进展[J]. 土壤, 2012, 44 (5): 712-718.CAI Yan-jiang, DING Wei-xin, XIANG Jian. Mechanisms of nitrousoxide and nitric oxide production in soils: A review[J]. Soils, 2012, 44(5): 712-718. (in Chinese) |
[30] | 朱永官, 王晓辉, 杨小茹, 等. 农田土壤 N2O 产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35 (2): 792-800.ZHU Yong-guan, WANG Xiao-hui, YANG Xiao-ru, et al. Key micro-bial processes in nitrous oxide emission of agricultural soil and mitiga-tion strategies[J]. Environmental Science, 2014, 35 (2): 792-800. (in Chinese) |
[31] | Omonode R A, Vyn T J. Nitrification kinetics and nitrous oxide emis-sions when nitrapyrin is coapplied with urea-ammonium nitrate[J]. A-gronomy Journal, 2013, 105 (6): 1475-1486. |
[32] | Zaman M, Nguyen M L, Matheson F, et al. Can soil amendments(zeo-lite or lime)shift the balance between nitrous oxide and dinitrogen e-missions from pasture and wetland soils receiving urine or urea-N?[J].Soil Research, 2007, 45 (7): 543-553. |
[33] | Thornton F C, Bock B R, Tyler D D. Soil emissions of nitric oxide andnitrous oxide from injected anhydrous ammonium and urea[J]. Journalof Environmental Quality, 1996, 25 (6): 1378-1384. |
[34] | Galdos M V, Siqueira Neto M, Feigl B J, et al. Nitrous oxide emissionfactors from N-fertilizer in sugarcane production in Brazil[C]. AGU FallMeeting Abstracts, 2013, 1: 418. |
[35] | Calvo P, Watts D B, Ames R N, et al. Microbial-based inoculants impactnitrous oxide emissions from an incubated soil medium containing ureafertilizers[J]. Journal of Environmental Quality, 2013, 42 (3): 704-712. |
[36] | Mosier A R, Hutchinson G L, Sabey B R, et al. Nitrous oxide emissionsfrom barley plots treated with ammonium nitrate or sewage sludge[J].Journal of Environmental Quality, 1982, 11 (1): 78-81. |
[37] | Kim D G, Hernandez-Ramirez G, Giltrap D. Linear and nonlinear de-pendency of direct nitrous oxide emissions on fertilizer nitrogen input:A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2013, 168:53-65. |