快速检索        
  农业资源与环境学报  2014, Vol. 31 Issue (5): 456-460

文章信息

史昊先, 高晓霞, 于景丽, 赵吉
SHI Hao-xian, GAO Xiao-xia, YU Jing-li, ZHAO Ji
外源氮添加对湿地土壤N2O排放量的影响
Effect of Exogenous Nitrogen Addition on Nitrous Oxide N 2 O Emissions from Wetland Soil
农业资源与环境学报, 2014, 31(5): 456-460
Journal of Agricultural Resources and Environment, 2014, 31(6): 513-520
http://dx.doi.org/10.13254/j.jare.2014.0180

文章历史

收稿日期:2014-07-14
外源氮添加对湿地土壤N2O排放量的影响
史昊先1,2, 高晓霞2, 于景丽1,2,3 , 赵吉2,3    
1. 内蒙古大学生命科学学院内,蒙古 呼和浩特 010021;
2. 内蒙古大学环境与资源学院;
3. 中美生态能源及可持续性科学内蒙古研究中心
摘要:为搞清湿地土壤驱动N2O排放的关键氮源类型,有效减少湿地N2O的排放,本文通过室内控制温湿度,用气相色谱法分析不同外源氮素对湿地N2O排放的影响。结果表明:外加氮源组总是高于对照组N2O排放量(4.4 mg·m-3)。在设定的剂量范围内,单独添加尿素或尿素与硝酸铵1∶1配合时N2O排放量呈现先增后减的单峰分布趋势,峰值分别为10.6 mg·m-3和229.0 mg·m-3;单独添加硝酸铵时N2O排放量(32.6-111.0 mg·m-3)随着氮素添加量增加呈现持续上升趋势。单独添加尿素或硝酸铵、尿素与硝酸铵1∶1配合均促进N2O的排放,但硝酸铵尿素混合添加对N2O排放量的贡献>单独添加硝酸铵>单独添加尿素。这为预测内蒙古高原区农牧交错带湿地氮素输入可能带来的温室效应和有效减排提供科学依据。
关键词湿地     添加外源氮素     尿素     硝酸铵     复合施肥     N2O排放量    
Effect of Exogenous Nitrogen Addition on Nitrous Oxide N 2 O Emissions from Wetland Soil
SHI Hao-xian1,2, GAO Xiao-xia2, YU Jing-li1,2,3 , ZHAO Ji2,3    
1. College of Life Sciences,Inner Mongolia University,Hohhot 010021,China;
2. College of Environment and Resources,Inner Mongolia U- niversity,Hohhot 010021,China;
3. Sino-US Center for Conservation,Energy Science in Inner Mongolia,Hohhot 010021,China
Abstract:It is important to make sure key nitrogen driving N2O emission source from wetland soil for efficient N2O emission reduction. In lab-oratory, the temperature and humidity were kept constant to study effect from different forms of exogenous N on N2O emissions from wetland soil by gas chromatography. The results showed that all groups of exogenous N inputs increased N2O emissions from wetland soil in contrast to CK group(4.4 mg·m -3). Under the group urea(U)alone and the combination of urea with ammonium nitrate(UAN)in a 1:1 concentration ra-tio, the change of N2O emissions showed a unimodal trend, first increased and then decreased, the peak value 10.6 mg· m -3 and 229.0 mg·m -3 of N2 O emissions corresponded to U and of UAN, respectively. While N2O emissions showed an upward trend for ammonium nitrate(AN)alone, within the range from 32.6 mg·m -3 to 111.0 mg·m -3 N2O emissions. All exogenous N treatments increased N2O emissions more than CK,UAN combination>AN alone>U alone. This provided a scientific basis for predicting greenhouse effect caused by N fertilizer in wetland soil from farming-pastoral transition zone, as well as a reference for effective reducing N2 O emissions from wetlands in Inner Mongolia Plateau.
Key words: wetland     addition of exogenous nitrogen     urea     ammonium nitrate     combination application     N 2 O emissions    

氧化亚氮(N2O)是继CO2和CH4之后的第三大温室气体[1]。中国化学氮肥年消耗量约占全球的25%,农业生产造成N2O 排放量正随氮肥使用量呈现指数增长趋势。中国是《京都议定书》缔约国,N2O 减排的研究成为举世瞩目的焦点问题。

国内外大量报道了农田、森林和草地等陆地系统氮添加对土壤N2O 排放量的影响[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]和自然湿地土壤N2O 排放的时空异质性[16, 17, 18, 19, 20, 21, 22, 23, 24, 25],鲜见外源氮添加对自然湿地土壤N2O 排放的影响[26]。内蒙古高原半干旱区农牧交错带湿地萎缩和次生盐碱化问题严重,而化肥和牲畜粪尿等氮源物质的大量输入可能导致土壤氮素损失或N2O的排放风险值增加[27, 28]

本论文通过室内控制温度湿度,研究无机氮和有机氮输入对N2O排放量的影响,分析不同外源氮素添加量与N2O 排放量对应的剂量效应关系,搞清湿地土壤驱动N2O 排放的氮源类型,为减少内蒙古高原区湿地N2O 的排放提供科学依据。 1 材料与方法 1.1 研究区概况

内蒙古高原小黑河水系呼和浩特市南湖段,地理坐标是N40°46′47″,E111°39′47″。该区气候干旱(300~400 mm),地下水位较浅(1~3 m),地表积盐现象明显,植被主要为耐盐耐湿的垂柳、旱柳、杞柳、怪柳等。采集的淹水区湿地土壤,质地粘重,土壤pH值8.3,全盐含量9.8 g·kg-1,有机质3.6 g·kg-1,碱解氮32.0 mg·kg-11.2 试验设计

充分混匀湿地土壤后按每瓶25.0 g分装到39 个250 mL 的集气瓶中。选择1 个不加任何氮源的蒸馏水作为空白对照组,3个外加氮源组:(1 )尿素水溶液;(2)硝酸铵水溶液;(3)尿素与硝酸铵1:1 配比的水溶液,每个氮源组均设置为1.0、2.0、3.0、4.0 g·L-1,每个剂量均设置3 个重复。光照培养箱内保持湿地土壤22℃恒温恒湿,培养2 周。 1.3 N2O的测定和计算方法

采集适量的气体用Agilent 7890A 气相色谱仪检测N2O 的浓度。待测气体浓度:Cs(mg·L-1)=As×C0/A0其中As为待测样品的峰面积;C0 为标气浓度(1.0 mg·L-1);A0为标气的峰面积。N2O 排放量(mg·m-3)=(M/22.4)×Cs(mg·L-1),其中M为N2O的分子质量。 1.4 数据的统计分析

采用Excel 2007 和SPSS 13.0 软件对不同处理3个重复对应的N2O 排放量进行数据处理、单因素方差分析和回归分析,并用最小显著差异法(LSD)对不同处理间各指标进行多重比较。用Origin Lab 8.5 对不同外加氮源处理与N2O 排放量的变化关系进行图形绘制。 2 结果与分析 2.1 尿素添加与湿地土壤N2O 排放量间的量效关系

表 1可知,尿素添加组N2O排放量均高于空白对照组4.4 mg·m-3,除处理组3 添加2.0 g·L-1 剂量组差异显著(P<0.05)外,其他剂量组与对照组差异不显著(P>0.05),说明尿素并非湿地土壤利用的主要氮源类型。随着尿素添加量的增加土壤N2O 的排放量呈现先增后减的单峰变化趋势,当尿素添加量为2.0 g·L-1时出现了N2O 排放量的峰值10.6 mg·m-3

表 1 不同外加氮源对湿地土壤N2O 排放量的影响 Table 1 Effect of different exogenous nitrogen on emissions of nitrous oxide in wetland soil
2.2 硝酸铵添加与湿地土壤N2O排放量间的量效关系

表 1 可知,NH4NO3 任一剂量组N2O 排放量显著高于对照组4.4 mg·m-3P<0.01),说明NH4NO3 是湿地土壤利用的主要氮源类型。随着NH4NO3添加量的增加N2O 排放量呈持续上升趋势,呈现线性正相关性关系(R2=0.94)。 2.3 尿素与硝酸铵按1:1 配比混合添加与湿地土壤N2O 排放量间的量效关系

表 1可知,尿素与NH4NO3按照1:1配比添加同样剂量的氮素时,N2O 排放量极显著高于对照组(P<0.01)。随着氮添加量的不断增加土壤N2O 的排放量亦呈现先增后减的单峰变化趋势,在氮素添加量为3.0 g·L-1时出现了N2O排放量的峰值229.0mg·m-32.4 三组外加氮源与湿地土壤N2O排放量间量效关系的比较分析

对比3 组氮源类型,湿地土壤中添加尿素与NH4NO3复合肥组N2O 排放量(71.3~229.0 mg·m-3)高于单独NH4NO3 组(32.6~111.0 mg·m-3),明显高于尿素组(5.9~10.6 mg·m-3)。说明尿素与NH4NO3复合肥组是湿地土壤最易利用的氮源类型,单独NH4NO3组是较易利用的氮源类型,而尿素是湿地土壤最不易利用的氮源类型。 3 讨论

土壤产生N2O除纯化学脱氮[29]外,主要是微生物驱动的脱氮过程,包括厌氧/好氧反硝化作用、好氧氨氧化和硝化作用等[29, 30, 31]。其中,好氧硝化将(NH4+/NH3)逐级氧化和厌氧反硝化将(NO3-/NO2-)逐级还原过程被认为是农田土壤释放N2O的重要代谢途径[29, 30]。土壤质地、溶解氧含量及底物类型和浓度等是影响这些脱氮过程的主要因素[29, 30, 31]3.1 湿地土壤驱动N2O 排放的氮源类型

本研究湿地土壤中添加尿素与NH4NO3复合肥组N2O 排放量或单独NH4NO3 组均明显高于尿素组。其中湿地土壤添加尿素不能引起N2O 排放量显著增加的结果和Zaman等[32]研究湿地的结果一致。原因之一是尿素中CONH2-N 不能被微生物直接利用产生N2O,需经脲酶水解变成NH4+/NH3后才能通过微生物的氨氧化和硝化作用形成N2O;原因之二是湿地土壤粘重、淹水条件下土壤通气性差,脲酶活性受到抑制不利于尿素中CONH2-N 向NH4+-N 转化,也不利于微生物的好氧氨氧化产生N2O,只能通过土壤中自身存在的NO2--N 与NH4+-N 结合释放少量的N2O。湿地土壤添加NH4NO3 比添加尿素更有利于N2O 的排放,原因可能是NH4NO3 中的NO3--N 为湿地土壤微生物反硝化优先利用的底物,逐级被还原产生较多的N2O,同时NH4NO3 中的NH4+-N 与反硝化过程积累的中间产物NO2--N 结合产生更多的N2O。Thornton 等[33]发现肥料类型强烈影响黄土土壤N2O的排放,NH4+-N比尿素-N 更容易产生N2O,这和本研究NH4NO3 中的NH4+-N 比尿素中CONH2-N 更容易被利用产生较多N2O 的结果相一致。Galdos等[34]研究发现巴西甘蔗林土壤施用NH4NO3 比尿素释放的N2O 少,与本研究结果恰恰相反。原因可能是本研究湿地土壤N2O 产生途径以微生物的逐级厌氧反硝化和化学反硝化[29]为主,而甘蔗林土壤以微生物的好氧氨氧化和硝化途径产生N2O为主[29, 30]。本研究发现尿素与NH4NO3 复合肥组中的NO3--N 和NH4+-N 仍是湿地土壤厌氧微生物反硝化优先利用的底物,且添加尿素形成的NH4+-N 刺激NO3--N 通过反硝化作用产生相对较多的N2O和中间产物NO2--N,加速了与NH4+-N 结合产生更多的N2O。Calvo 等[35] 发现特定条件下尿素与NH4NO3 复合肥有利于N2O 的释放,间接验证了本研究湿地土壤尿素与NH4NO3 复合肥组比单一的尿素组或NH4NO3 组更有利于N2O排放的结果。 3.2 氮素添加量对土壤N2O排放的影响

本研究发现淹水还原条件下湿地土壤添加尿素虽不容易产生N2O,但当尿素浓度不断增加,N2O 的排放量呈现先增后减的变化趋势,说明在环境因素相对稳定的条件下,底物浓度是驱动N2O 排放的关键要素。Mosier 等[36]研究了不同剂量NH4NO3对N2O 排放的影响,发现N2O 的增加量与NH4NO3的施用量呈现线性关系。这和本研究湿地N2O 排放量与NH4NO3添加量呈线性正相关性关系的结果相一致,符合Kim等[37]提出的线性关系。本研究单独添加尿素组或尿素与NH4NO3复合肥组均呈现先增后减的变化趋势,符合Kim等[37]提出的非线性关系。 4 结论

外加氮源组N2O 排放量(5.9~229.0 mg·m-3)总高于无氮素添加对照组的N2O 排放量(4.4 mg·m-3)。氮素形态及用量是驱动淹水湿地土壤N2O 排放量的关键因素,推测淹水土壤NH4NO3中NO3--N是最易转化成N2O 的氮素类型,NH4+-N 次之;尿素中CONH2-N不易转化为N2O,具有滞后效应。尿素添加组及尿素与硝酸铵复合组土壤N2O 的排放量均随着氮素添加量的增加呈先增后减的单峰变化趋势,硝酸铵添加组N2O 排放量则随着氮素添加量的增加呈持续上升趋势。淹水湿地土壤尿素配合NH4NO3更有利于N2O 的排放,表现为添加尿素与硝酸铵复合组(71.3~229.0mg·m-3)>单独硝酸铵组(32.6~111.0 mg·m-3)>单独尿素组(5.9~10.6 mg·m-3)。

参考文献
[1] 马晓菲, 谢文霞, 赵全升. 外源氮输入对土壤 N2O 释放的影响研究进展[J]. 环境科学与技术, 2010, 33 (12): 453-457.MA Xiao-fei, XIE Wen-xia, ZHAO Quan-sheng. Progress on effects ofexogenous nitrogen input on N2O emission from soil[J]. EnvironmentalScience & Technology, 2010, 33 (12): 453-457. (in Chinese)
[2] 张岳芳, 周 炜, 王子臣, 等. 氮肥施用方式对油菜生长季氧化亚氮排放的影响[J]. 农业环境科学学报, 2013, 32 (8): 1690-1696.ZHANG Yue-fang, ZHOU Wei, WANG Zi-chen, et al. Effect of nitro-gen fertilizer application modes on nitrous oxide emissions during grow-ing season of oilseed rape(Brassicanapus) [J]. Journal of Agro-Environ-ment Science, 2013, 32 (8): 1690-1696.(in Chinese)
[3] 黄红英, 曹金留, 靳红梅, 等. 猪粪沼液施用对稻麦轮作系统土壤氧化亚氮排放的影响[J]. 农业环境科学学报, 2012, 30 (11): 2353-2361.HUANG Hong-ying, CAO Jin-liu, JIN Hong-mei, et al. Influence ofapplication of digested pig slurry on nitrous oxide emission under rice-wheat rotation system[J]. Journal of Agro-Environment Science, 2012,30 (11): 2353-2361. (in Chinese)
[4] 马二登, 马 静, 徐 华, 等. 追肥时间对小麦拔节-成熟期氧化亚氮排放的影响[J]. 土壤学报, 2011, 48 (5): 971-978.MA Er-deng, MA Jing, XU Hua, et al. Nitrous oxide emissions fromwheat field at wheat jointing-maturing stage as affected by timing of top-dressing[J]. ActaPedologicaSinica, 2011, 48 (5): 971-978. (in Chinese)
[5] 杜亚琴, 郑丽行, 樊小林. 三种控释肥在赤红壤中的氧化亚氮排放[J]. 应用生态学报, 2011, 22 (9): 2370-2376.DU Ya-qin, ZHENG Li-xing, FAN Xiao-lin. Effect of applying con-trolled release fertilizers on N2O emission from a lateritic red soil[J]. Chi-nese Journal of Applied Ecology, 2011, 22 (9): 2370-2376. (in Chinese)
[6] 王 建, 诸葛玉平, 彭福田, 等. 袋控肥对土壤氨挥发, 氧化亚氮和二氧化碳排放的影响[J]. 水土保持学报, 2013, 27 (6): 294-297.WANG Jian, ZHUGE Yu-ping, PENG Fu-tian, et al. Effect of paperpackage fertilization on soil ammonia volatilization, nitrous oxide andcarbondioxide emission[J]. Journal of Soil and Water Conservation, 2013,27 (6): 294-297.(in Chinese)
[7] Smith K A, Bouwman L, Braatz B. Nitrous oxide: Direct emissions fromagricultural soils [C]//Background paper for IPCC workshop on goodpractice in inventory preparation: Agricultural sources of methane andnitrous oxide, 1999: 24-26.
[8] Davidson E A. The contribution of manure and fertilizer nitrogen to at-mospheric nitrous oxide since 1860[J]. Nature Geoscience, 2009, 2 (9):659-662.
[9] Wolf B, Zheng X, Garbageman N, et al. Grazing-induced reduction ofnaturalnitrousoxidereleasefromcontinental steppe[J].Nature,2010,464(7290): 881-884.
[10] Kim D G, Rafique R, Leahy P, et al. Estimating the impact of changingfertilizer application rate, land use, and climate on nitrous oxide emis-sions in Irish grasslands[J]. Plant and Soil, 2014, 374 (1-2): 55-71.
[11] Reay D S, Davidson E A, Smith K A, et al. Global agriculture and ni-trous oxide emissions[J]. Nature Climate Change, 2012, 2 (6): 410-416.
[12] Hoben J P, Gehl R J, Millar N, et al. Nonlinear nitrous oxide(N2O)re-sponse to nitrogen fertilizer in on-farm corn crops of the US Midwest[J].Global Change Biology, 2011, 17 (2): 1140-1152.
[13] Das S, Adhya T K. Effect of combine application of organic manure andinorganic fertilizer on methane and nitrous oxide emissions from a trop-ical flooded soil planted to rice[J]. Geoderma, 2014, 213: 185-192.
[14] Singh J, Krishnamurti A, Bolan N S, et al. Impact of urease inhibitor onammonia and nitrous oxide emissions from temperate pasture soil coresreceivingureafertilizerandcattleurine[J]. Science of the Total Environ-ment, 2013, 465: 56-63.
[15] Pelster D E, Larouche F, Rochette P, et al. Nitrogen fertilization but notsoil tillage affects nitrous oxide emissions from a clay loam soil under amaize soybean rotation[J]. Soil and Tillage Research, 2011, 115: 16-26.
[16] 李 勇, 刘 敏, 陆敏, 等. 崇明东滩芦苇湿地氧化亚氮排放[J].环境科学学报, 2010, 30 (12): 2526-2534.LI Yong, LIU Min, LU Min, et al. Phragmites australis effects on N2O e-mission in the Chongming eastern tidal flat[J]. Acta Scientiae Circum-stantiae, 2010, 30 (12): 2526-2534.(in Chinese)
[17] 袁淑方, 王为东. 太湖流域源头溪流氧化亚氮 (N2O) 释放特征[J]. 生态学报, 2012, 32 (20): 6279-6288.YUAN Shu-fang, WANG Wei-dong. Characteristics of nitrous oxide(N 2O)emission from a headstream in the upper Taihu Lake Basin[J]. ActaEcologicaSinica, 2012, 32 (20): 6279-6288.(in Chinese)
[18] 王德宣. 若尔盖高原泥炭沼泽二氧化碳, 甲烷和氧化亚氮排放通量研究[J]. 湿地科学, 2010, 8 (3): 220-224.WANG De-xuan. Emission fluxes of carbon dioxide, methane and ni-trous oxide from peat marsh in Zoig Plateau[J]. Wetland Science, 2010,8 (3): 220-224.(in Chinese)
[19] Zhang Q Y, Li F D, Tang C Y. Quantifying of soil denitrification poten-tial inawetlandecosystem,ochiexperiment site,Japan[J].Journalof Re-sources and Ecology, 2012, 3 (1): 93-96.
[20] 胡智强. 闽江河口沼泽湿地 3 种温室气体通量日进程特征[D]. 福州: 福建师范大学, 2011.HU Zhi-qiang. Diurnal variations of greenhouse gas fluxes from themarsh in the Min River estuary[D]. Fuzhou: Fujian Normal University,2011.(in Chinese)
[21] 孙巧奇. 中国嫩江流域湿地温室气体通量变化及其影响因素研究[D]. 北京: 北京林业大学, 2013.SUN Qiao-qi. The study of greenhouse gas flux and its influencing fac-tors in the Nen River Valley wetlands of China[D]. Beijing: Beijing Fo-restry University, 2013. (in Chinese)
[22] 谢文霞, 赵全升, 张 芳, 等. 胶州湾河口湿地秋冬季 N2O 气体排放通量特征[J]. 地理科学, 2011, 31 (4): 464-469.XIE Wen-xia, ZHAO Quan-sheng, ZHANG Fang, et al. Characteristicsof N 2 O flux in estuary wetland of Jiaozhou Bay in autumn and winter[J]. ScientiaGeographicaSinica, 2011, 31 (4): 464-469.(in Chinese)
[23] Lind L P D, Audet J, Tonderski K, et al. Nitrate removal capacity andnitrous oxide production in soil profiles of nitrogen loaded riparian wet-lands inferred by laboratory microcosms[J]. Soil Biology and Biochem-istry, 2013, 60: 156-164.
[24] Scaroni A E, Ye S, Lindau C W, et al. Nitrous oxide emissions fromsoils in louisiana忆s Atchafalaya River Basin[J]. Wetlands, 2014: 34 (3):545-554.
[25] J.rgensen C J, Elberling B. Effects of flooding-induced N2O produc-tion, consumption and emission dynamics on the annual N2O emissionbudget inwetlandsoil[J].Soil BiologyandBiochemistry,2012,53:9-17.
[26] Masaka J, Nyamangara J, Wuta M. Nitrous oxide emissions from wet-land soil amended with inorganic and organic fertilizers[J]. Archives ofAgronomy and Soil Science, 2014, 60 (10): 1-25.
[27] Asgedom H, Tenuta M, Flaten D N, et al. Nitrous oxide emissions froma clay soil receiving granular urea formulations and dairy manure[J]. A-gronomy Journal, 2014, 106: 1-13.
[28] Das S, Adhya T K. Effect of combine application of organic manure andinorganic fertilizer on methane and nitrous oxide emissions from a trop-ical flooded soil planted to rice[J]. Geoderma, 2014, 213: 185-192.
[29] 蔡延江, 丁维新, 项 剑. 土壤 N2O 和 NO 产生机制研究进展[J]. 土壤, 2012, 44 (5): 712-718.CAI Yan-jiang, DING Wei-xin, XIANG Jian. Mechanisms of nitrousoxide and nitric oxide production in soils: A review[J]. Soils, 2012, 44(5): 712-718. (in Chinese)
[30] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤 N2O 产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35 (2): 792-800.ZHU Yong-guan, WANG Xiao-hui, YANG Xiao-ru, et al. Key micro-bial processes in nitrous oxide emission of agricultural soil and mitiga-tion strategies[J]. Environmental Science, 2014, 35 (2): 792-800. (in Chinese)
[31] Omonode R A, Vyn T J. Nitrification kinetics and nitrous oxide emis-sions when nitrapyrin is coapplied with urea-ammonium nitrate[J]. A-gronomy Journal, 2013, 105 (6): 1475-1486.
[32] Zaman M, Nguyen M L, Matheson F, et al. Can soil amendments(zeo-lite or lime)shift the balance between nitrous oxide and dinitrogen e-missions from pasture and wetland soils receiving urine or urea-N?[J].Soil Research, 2007, 45 (7): 543-553.
[33] Thornton F C, Bock B R, Tyler D D. Soil emissions of nitric oxide andnitrous oxide from injected anhydrous ammonium and urea[J]. Journalof Environmental Quality, 1996, 25 (6): 1378-1384.
[34] Galdos M V, Siqueira Neto M, Feigl B J, et al. Nitrous oxide emissionfactors from N-fertilizer in sugarcane production in Brazil[C]. AGU FallMeeting Abstracts, 2013, 1: 418.
[35] Calvo P, Watts D B, Ames R N, et al. Microbial-based inoculants impactnitrous oxide emissions from an incubated soil medium containing ureafertilizers[J]. Journal of Environmental Quality, 2013, 42 (3): 704-712.
[36] Mosier A R, Hutchinson G L, Sabey B R, et al. Nitrous oxide emissionsfrom barley plots treated with ammonium nitrate or sewage sludge[J].Journal of Environmental Quality, 1982, 11 (1): 78-81.
[37] Kim D G, Hernandez-Ramirez G, Giltrap D. Linear and nonlinear de-pendency of direct nitrous oxide emissions on fertilizer nitrogen input:A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2013, 168:53-65.