文章摘要
高效液相色谱法测定多效唑在海南芒果园土壤的吸附特征
Characteristics of paclobutrazol sorption in mango soil in Hainan Province using high performance liquid chromatography
投稿时间:2019-07-23  
DOI:10.13254/j.jare.2019.0386
中文关键词: 多效唑,芒果园土壤,吸附,理化性质
英文关键词: paclobutrazol, mango soil, sorption, physicochemical properties
基金项目:国家自然科学基金项目(41371465);海南省重大科技计划(ZDKJ2017002);中国热带农业科学院基本科研业务费专项(1630042020008,1630042020010)
作者单位E-mail
吴东明 中国热带农业科学院环境与植物保护研究所, 海口 571101
农业农村部儋州农业环境科学观测实验站, 海南 儋州 571737 
 
李怡 中国热带农业科学院环境与植物保护研究所, 海口 571101
农业农村部儋州农业环境科学观测实验站, 海南 儋州 571737 
 
邓晓 中国热带农业科学院环境与植物保护研究所, 海口 571101
农业农村部儋州农业环境科学观测实验站, 海南 儋州 571737 
 
张文 中国热带农业科学院环境与植物保护研究所, 海口 571101
农业农村部儋州农业环境科学观测实验站, 海南 儋州 571737 
 
武春媛 中国热带农业科学院环境与植物保护研究所, 海口 571101
农业农村部儋州农业环境科学观测实验站, 海南 儋州 571737 
cywu@catas.cn 
李勤奋 中国热带农业科学院环境与植物保护研究所, 海口 571101
农业农村部儋州农业环境科学观测实验站, 海南 儋州 571737 
qinfenli2005@163.com 
摘要点击次数: 1366
全文下载次数: 1560
中文摘要:
      为探讨多效唑在海南芒果园土壤中的吸附特性,以C18色谱柱为分离柱,乙腈/水(V/V=62:38)为流动相,PDA为检测器(检测波长221 nm)建立了一种多效唑高效液相检测法,并结合批量平衡法测定多效唑在海南芒果园土壤中的吸附常数。方法学考察结果表明:建立的高效液相色谱法在0.5~40 mg·L-1范围内线性良好(R2=99.98%),检出限为0.1 mg·L-1,定量限为0.3 mg·L-1,回收率为94.16%~102.30%,相对标准偏差为1.14%~3.93%,适用于多效唑吸附试验的测定。等温吸附结果表明:多效唑在土壤中的等温吸附过程符合Freundlich模型,吸附自由能ΔG<0,10 kJ·mol-1<|ΔG|<20 kJ·mol-1,是一个自发的、非均质的、多层的物理吸附过程,受氢键结合作用和偶极间作用主导。吸附常数Kf在1.20~13.15 L·kg-1之间,平均值为5.96 L·kg-1,属于难吸附有机污染物。各土壤间吸附常数的变异系数为69.93%,说明不同土壤对多效唑的吸附效应差异大。主成分分析表明,多效唑在土壤的吸附与土壤有机质含量、阳离子交换量、黏粒含量呈正相关关系,其中阳离子交换量是主控因子。研究表明,多效唑在海南芒果园土壤吸附作用弱,对地下水具有潜在环境风险,吸附过程受土壤理化性质影响。
英文摘要:
      In order to characterize the sorption behavior of paclobutrazol in mango soil in Hainan, sensitive high performance liquid chromatography (HPLC) for the analysis of paclobutrazol in solution was developed with a C18 column and PDA detector set at 221 nm. The mobile phase consisted of a mixture of 62:38 (V/V) acetonitrile and distilled water. Moreover, a sorption isotherm experiment was also conducted. The chromatography results showed a good linear relationship (R2=99.98%) between the HPLC peak area and the concentration of paclobutrazol; The concentration was optimized from 0.5 mg·L-1 to 40.0 mg·L-1, and the limit of detection and limit of quantitation reached 0.1 mg·L-1 and 0.3 mg·L-1, respectively. Moreover, satisfactory relative recoveries ranging from 94.16% to 102.30% were achieved with relative standard deviations of 1.14%~3.93%. This indicated that the HPLC method was suitable for testing paclobutrazol sorption. The sorption isotherm experiment showed that the sorption process of paclobutrazol in mango soils was well-fitted by the Freundlich model with ΔG<0 and 10 kJ·mol-1<|ΔG|<20 kJ·mol-1, thereby suggesting that paclobutrazol sorption on the mango soils was a spontaneous, exothermic, and anisotropic process dominated by physical forces. The value of Kf ranged from 1.20 L·kg-1 to 13.15 L·kg-1 with an average of 5.96 L·kg-1, thereby implying that the adsorption of paclobutrazol by soils was difficult. The sorption coefficient achieved a high value of 69.93%, thereby suggesting that a significant difference in sorption capacity existed among the mango soils. Through principal component analysis, significantly positive correlations between the sorption coefficient and soil organic matter, cation exchange capacity (CEC), and clay were observed, among which the value of CEC was the dominant factor that affected the sorption capacity of paclobutrazol in Hainan mango soil. It was concluded that paclobutrazol was weakly absorbed by Hainan mango soil, which was significantly affected by soil physicochemical properties; Thus, it may pose a potential environmental risk to groundwater.
HTML   查看全文   查看/发表评论  下载PDF阅读器
关闭