粮食产量预测理论、方法与应用

III. 粮食生产潜力中、长期预测理论、模型及其应用

刘书田1, 王烁今2, 米长虹1, 侯彦林1*, 郑宏艳1, 王 农1, 蔡彦明1, 黄治平1, 夏 维1, 任 军3, 王新民4, 候显达5

(1. 农业部环境保护科研监测所，天津 300191; 2. 北京信息科学技术研究中心，北京 100089; 3. 吉林省农业科学院，吉林 长春 130033; 4. 河南农业大学经济学院，河南 郑州 450011; 5. 北京优雅施软件研发中心，北京 100089)

摘 要：粮食生产潜力中、长期预测的目的是为中、长期粮食生产规划提供科学依据。粮食生产潜力中、长期预测的“双向预测理论”，从若干个预测模型中选择出 2 个模型，一个模型预测的未来产量是持续增加的，体现产量持续增加的科技进步力量；另一个模型预测的未来产量是先增加后减少或持续减少的，体现产量持续增加的负面综合因素力量。应用结果表明，模型可预测未来 1~10 年的粮食生产潜力，预测平均误差在 5%以内。大量案例证明粮食生产潜力中、长期预测的“双向预测理论”是科学的，方法是通用的，结果是实用的。

关键词: 粮食潜力; 中长期; 预测; 理论; 方法

中图分类号: S114 文献标志码: A 文章编号: 2095-6819(2014)03-0220-07
doi: 10.13254/j.jare.2014.0069

The Theory, Method and Its Application of the Grain Yield Forecast

III. The Theory, Method and Its Application of Medium and Long-Term Forecast of the Grain Yield Potential

LIU Shu-tian1, WANG Shuo-jin2, MI Chang-hong1, HOU Yan-lin1*, ZHENG Hong-yan1, WANG Nong1, CAI Yan-ming1, HUANG Zhi-ping1, XIA Wei1, REN Jun3, WANG Xin-min4, HOU Xian-da5

(1. Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China; 2. Beijing Research Center for Information Technology in Agriculture, Beijing 100089, China; 3. Jilin Academy of Agricultural Sciences, Changchun 130033, China; 4. Henan College of Animal Husbandry and Economy, Zhengzhou 450011, China; 5. Software Development and Service Center of Beijing Yours, Beijing 100089, China)

Abstract: The purpose of the long—term prediction of grain yield potential is to provide scientific basis for planning medium and long—term food production in China. The "bidirectional prediction theory" of food production potential for medium and long—term is defined as follows: choosing two models from several prediction models, one model to predict the future output is increasing, which is an embodiment of science and technology, the other to predict the future output is increasing first and then decreasing or declining, which is reflected integrative negative factors impact the yield increasing. The application results showed that the model could predict the grain yield potential in the future of 1 to 10 years, and the average error of prediction was less than 5%. The "bidirectional prediction theory" of food production for medium and long—term was scientific, its method was universal, and the result was practical.

Keywords: grain yield potential; medium and long—term; prediction; theory; method

前文生产潜力的预测是关于下一年的预测[1-2], 即短期预测, 对于国家制定中、长期粮食发展规划的指导意义有限。本文重点介绍以 n 年（暂定为 10 和 20 年）平均产量为移动步长的中、长期生产潜力预测的理论和模型, 暂定为预测未来 1~10 年的生产潜力。

1 材料与方法

从公开发表的数据中整理出全国和东北三省 1949～2010 年粮食单产数据。使用本文提出的粮食生产潜力中、长期预测的“双向预测理论”，即以 10 年或 20 年移动平均产量为基础，分别以最近的 5, 10,
15个和20个点为样本建立预测模型，并分别预测；从4个模型中按5、10、15、20的顺序选择2个相邻模型的组合，一个模型预测的未来产量是持续增加的，体现产量持续增加的科技进步力量；另一个模型预测的未来产量是先增加后减少或持续减少的，体现影响产量持续增加的负面综合因素力量，如小气候周...
表1 全国粮食单产中期预测原始数据(1949—2010年)

<table>
<thead>
<tr>
<th>年份</th>
<th>单产/ kg·hm^{-2}</th>
<th>10年移动平均/ kg·hm^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>1 029</td>
<td>1 042</td>
<td>1965</td>
<td>1 626</td>
<td>1 402</td>
<td>1981</td>
<td>2 827</td>
<td>2 439</td>
<td>1997</td>
<td>4 376</td>
<td>4 032</td>
</tr>
<tr>
<td>1950</td>
<td>1 155</td>
<td>1 348</td>
<td>1966</td>
<td>1 769</td>
<td>1 438</td>
<td>1982</td>
<td>3 124</td>
<td>2 553</td>
<td>1998</td>
<td>4 502</td>
<td>4 124</td>
</tr>
<tr>
<td>1951</td>
<td>1 220</td>
<td>1 475</td>
<td>1967</td>
<td>1 827</td>
<td>1 475</td>
<td>1983</td>
<td>3 396</td>
<td>2 674</td>
<td>1999</td>
<td>4 493</td>
<td>4 210</td>
</tr>
<tr>
<td>1952</td>
<td>1 322</td>
<td>1 500</td>
<td>1968</td>
<td>1 800</td>
<td>1 500</td>
<td>1984</td>
<td>3 608</td>
<td>2 807</td>
<td>2000</td>
<td>4 261</td>
<td>4 243</td>
</tr>
<tr>
<td>1953</td>
<td>1 317</td>
<td>1 533</td>
<td>1969</td>
<td>1 794</td>
<td>1 533</td>
<td>1985</td>
<td>3 483</td>
<td>2 920</td>
<td>2001</td>
<td>4 267</td>
<td>4 282</td>
</tr>
<tr>
<td>1954</td>
<td>1 314</td>
<td>1 617</td>
<td>1970</td>
<td>2 012</td>
<td>1 617</td>
<td>1986</td>
<td>3 529</td>
<td>3 036</td>
<td>2002</td>
<td>4 399</td>
<td>4 322</td>
</tr>
<tr>
<td>1955</td>
<td>1 417</td>
<td>1 711</td>
<td>1971</td>
<td>2 070</td>
<td>1 711</td>
<td>1987</td>
<td>3 637</td>
<td>3 165</td>
<td>2003</td>
<td>4 333</td>
<td>4 342</td>
</tr>
<tr>
<td>1956</td>
<td>1 414</td>
<td>1 783</td>
<td>1972</td>
<td>1 984</td>
<td>1 783</td>
<td>1988</td>
<td>3 579</td>
<td>3 270</td>
<td>2004</td>
<td>4 621</td>
<td>4 398</td>
</tr>
<tr>
<td>1957</td>
<td>1 460</td>
<td>1 861</td>
<td>1973</td>
<td>2 187</td>
<td>1 861</td>
<td>1989</td>
<td>3 632</td>
<td>3 355</td>
<td>2005</td>
<td>4 642</td>
<td>4 438</td>
</tr>
<tr>
<td>1958</td>
<td>1 549</td>
<td>1 934</td>
<td>1974</td>
<td>2 275</td>
<td>1 934</td>
<td>1990</td>
<td>3 933</td>
<td>3 475</td>
<td>2006</td>
<td>4 716</td>
<td>4 461</td>
</tr>
<tr>
<td>1959</td>
<td>1 462</td>
<td>2 007</td>
<td>1975</td>
<td>2 350</td>
<td>2 007</td>
<td>1991</td>
<td>3 876</td>
<td>3 580</td>
<td>2007</td>
<td>4 748.32</td>
<td>4 498</td>
</tr>
<tr>
<td>1960</td>
<td>1 175</td>
<td>2 067</td>
<td>1976</td>
<td>2 371</td>
<td>2 067</td>
<td>1992</td>
<td>4 004</td>
<td>3 668</td>
<td>2008</td>
<td>4 950.783</td>
<td>4 543</td>
</tr>
<tr>
<td>1963</td>
<td>1 408</td>
<td>2 291</td>
<td>1979</td>
<td>2 785</td>
<td>2 291</td>
<td>1995</td>
<td>4 240</td>
<td>3 862</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1964</td>
<td>1 536</td>
<td>2 363</td>
<td>1980</td>
<td>2 734</td>
<td>2 363</td>
<td>1996</td>
<td>4 483</td>
<td>3 958</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 全国粮食单产中期预测结果(2006—2010年)

<table>
<thead>
<tr>
<th>10年移动平均/ kg·hm^{-2}</th>
<th>5点建模预测结果</th>
<th>10点建模预测结果</th>
<th>15点建模预测结果</th>
<th>20点建模预测结果</th>
<th>5点和10点平均预测</th>
</tr>
</thead>
<tbody>
<tr>
<td>预测值/ kg·hm^{-2}</td>
<td>误差/ %</td>
<td>预测值/ kg·hm^{-2}</td>
<td>误差/ %</td>
<td>预测值/ kg·hm^{-2}</td>
<td>误差/ %</td>
</tr>
<tr>
<td>4 461</td>
<td>4 491</td>
<td>4 435</td>
<td>-0.57</td>
<td>4 467</td>
<td>0.14</td>
</tr>
<tr>
<td>4 498</td>
<td>4 548</td>
<td>4 444</td>
<td>-1.21</td>
<td>4 493</td>
<td>-0.12</td>
</tr>
<tr>
<td>4 543</td>
<td>4 611</td>
<td>4 445</td>
<td>-2.16</td>
<td>4 514</td>
<td>-0.64</td>
</tr>
<tr>
<td>4 581</td>
<td>4 678</td>
<td>4 439</td>
<td>-3.09</td>
<td>4 530</td>
<td>-1.10</td>
</tr>
<tr>
<td>4 652</td>
<td>4 751</td>
<td>4 427</td>
<td>-4.85</td>
<td>4 543</td>
<td>-2.35</td>
</tr>
</tbody>
</table>

表3 辽宁省粮食单产中期预测结果(2006—2010年)

<table>
<thead>
<tr>
<th>10年移动平均/ kg·hm^{-2}</th>
<th>5点建模预测结果</th>
<th>10点建模预测结果</th>
<th>15点建模预测结果</th>
<th>20点建模预测结果</th>
<th>5点和10点平均预测</th>
</tr>
</thead>
<tbody>
<tr>
<td>预测值/ kg·hm^{-2}</td>
<td>误差/ %</td>
<td>预测值/ kg·hm^{-2}</td>
<td>误差/ %</td>
<td>预测值/ kg·hm^{-2}</td>
<td>误差/ %</td>
</tr>
<tr>
<td>5 201</td>
<td>5 386</td>
<td>5 118</td>
<td>-1.60</td>
<td>5 131</td>
<td>-1.34</td>
</tr>
<tr>
<td>5 355</td>
<td>5 618</td>
<td>5 122</td>
<td>-4.35</td>
<td>5 140</td>
<td>-4.02</td>
</tr>
<tr>
<td>5 366</td>
<td>5 896</td>
<td>5 120</td>
<td>-4.59</td>
<td>5 141</td>
<td>-4.19</td>
</tr>
<tr>
<td>5 336</td>
<td>6 222</td>
<td>5 111</td>
<td>-4.22</td>
<td>5 136</td>
<td>-3.75</td>
</tr>
<tr>
<td>5 508</td>
<td>6 595</td>
<td>5 094</td>
<td>-7.51</td>
<td>5 123</td>
<td>-6.98</td>
</tr>
</tbody>
</table>

从5 386 kg·hm^{-2}到6 595 kg·hm^{-2}一直是增加的趋势；
这两个模型符合“双向预测模型”的条件，故取其预测结果的平均，5年的预测误差平均为3.24%，其中2年预测误差超过5%。

表4表明：吉林省粮食单产5年(2006—2010年)
中期预测结果中，10点建模预测结果的预测值从5 521 kg·hm^{-2}到5 044 kg·hm^{-2}一直是减少的趋势，而5点建模预测结果的预测值从5 738 kg·hm^{-2}到6 120
综合考量，取 n=20 计算 20 年平均产量，得到 1968—2010 年的 43 个连续的 20 年的平均产量数据。表 6 表明：全国粮食单产 10 年（2001—2010 年）长期预测中，5 点建模预测结果的预测值从预报的平均，5 年的预测误差平均为 1.26%，最大预测误差 3.67%。

表 5 黑龙江省粮食单产中期预测结果 (2006—2010 年)

<table>
<thead>
<tr>
<th>10 年移动平均/ kg·hm²</th>
<th>5 点建模预测结果</th>
<th>10 点建模预测结果</th>
<th>15 点建模预测结果</th>
<th>20 点建模预测结果</th>
<th>5 点和 10 点平均预测</th>
</tr>
</thead>
<tbody>
<tr>
<td>预测值/ kg·hm⁻²</td>
<td>误差/ %</td>
<td>预测值/ kg·hm⁻²</td>
<td>误差/ %</td>
<td>预测值/ kg·hm⁻²</td>
<td>误差/ %</td>
</tr>
<tr>
<td>3.609</td>
<td>3.642</td>
<td>0.91</td>
<td>3.575</td>
<td>-0.94</td>
<td>3.636</td>
</tr>
<tr>
<td>3.541</td>
<td>3.651</td>
<td>3.10</td>
<td>3.530</td>
<td>-0.29</td>
<td>3.624</td>
</tr>
<tr>
<td>3.553</td>
<td>3.654</td>
<td>2.85</td>
<td>3.468</td>
<td>-2.39</td>
<td>3.598</td>
</tr>
<tr>
<td>3.556</td>
<td>3.653</td>
<td>2.74</td>
<td>3.389</td>
<td>-4.69</td>
<td>3.561</td>
</tr>
</tbody>
</table>

表 6 全国粮食单产长期预测结果 (2001—2010)

<table>
<thead>
<tr>
<th>20 年移动平均/ kg·hm²</th>
<th>5 点建模预测结果</th>
<th>10 点建模预测结果</th>
<th>15 点建模预测结果</th>
<th>20 点建模预测结果</th>
<th>5 点和 10 点平均预测</th>
</tr>
</thead>
<tbody>
<tr>
<td>预测值/ kg·hm⁻²</td>
<td>误差/ %</td>
<td>预测值/ kg·hm⁻²</td>
<td>误差/ %</td>
<td>预测值/ kg·hm⁻²</td>
<td>误差/ %</td>
</tr>
<tr>
<td>3.931</td>
<td>3.927</td>
<td>-0.09</td>
<td>3.959</td>
<td>0.73</td>
<td>3.973</td>
</tr>
<tr>
<td>3.995</td>
<td>3.987</td>
<td>-0.20</td>
<td>4.049</td>
<td>1.35</td>
<td>4.070</td>
</tr>
<tr>
<td>4.041</td>
<td>4.037</td>
<td>-0.12</td>
<td>4.136</td>
<td>2.35</td>
<td>4.167</td>
</tr>
<tr>
<td>4.092</td>
<td>4.078</td>
<td>-0.36</td>
<td>4.223</td>
<td>3.20</td>
<td>4.264</td>
</tr>
<tr>
<td>4.334</td>
<td>4.151</td>
<td>-4.22</td>
<td>4.559</td>
<td>5.20</td>
<td>4.655</td>
</tr>
<tr>
<td>4.395</td>
<td>4.146</td>
<td>-5.67</td>
<td>4.640</td>
<td>5.57</td>
<td>4.753</td>
</tr>
</tbody>
</table>
3 927 kg·hm⁻²到4 151 kg·hm⁻²再到4 133 kg·hm⁻²是先上升后下降趋势，但上升和下降都很缓慢；而10点建模预测结果的预测值从3 959 kg·hm⁻²到4 720 kg·hm⁻²一直是上升的趋势；这2个模型符合“双向预测模型”的条件，因此取其预测结果的平均，10年的预测误差平均为0.82%，最大预测误差1.42%。

2.3.2 东北三省粮食单产长期预测案例

表7表明：吉林省粮食单产10年（2001—2010年）长期预测结果中，5点建模预测结果的预测值从4 559 kg·hm⁻²到4 566 kg·hm⁻²再到3 854 kg·hm⁻²是先上升后下降趋势；而10点建模预测结果的预测值从4 590 kg·hm⁻²到4 751 kg·hm⁻²再到3 723 kg·hm⁻²是先上升后下降趋势，上升和下降都很缓慢；这2个模型不符合“双向预测模型”的条件；而10点和15点建模的2个模型也不符合“双向预测模型”的条件；最后15点和20点建模的2个模型符合“双向预测模型”的条件，10年的预测误差平均为1.52%，最大预测误差2.53%。

表8表明；吉林省粮食单产10年（2001—2010年）长期预测结果中，5点建模预测结果的预测值从5 083 kg·hm⁻²到5 431 kg·hm⁻²再到5 339 kg·hm⁻²是先上升后下降趋势；而10点建模预测结果的预测值从5 153 kg·hm⁻²到6 726 kg·hm⁻²是一直上升趋势；这2个模型符合“双向预测模型”的条件，因此取其预测结果的平均，10年的预测误差平均为3.66%，最大预测误差5.40%。

根据文中的原则：在预测未来10年过程中，如果又经历了3年获得实产后，则可计算出预测误差，
当误差连续 3 次向一个方向偏离并且超过 1% 后递增，则可以对未来预测结果进行小趋势修正，这样还将提高预测精度。具体用到吉林省粮食年度长期预测结果修正方法如下：先算出最近 3 年的预测误差分别 1.68%、1.80%、2.85%；平均每年增加 0.858%；则对第 4 年以后的预测结果进行修正，修正方法是第 4 年修正后的预测值为 $Y_n=1-\frac{2.85%+0.858\times (n-3)}{(n\geq 4)}$，修正前逐年度产量分别为 5145、5626、5727、5819、5900、5971、6032 kg·hm$^{-2}$，修正后误差分别为：0.451%、-0.276%、-1.901%、-2.277%、-1.523%、-2.295%、-1.924%；修正后的预测误差最大为 2.29%。

表 9 表明：黑龙江省粮食单产 10 年（2001—2010 年）长期预测结果中，5 点建模预测结果的预测值从 2920 kg·hm$^{-2}$ 到 3000 kg·hm$^{-2}$ 再到 2798 kg·hm$^{-2}$ 是先上升后下降趋势；而 10 点建模预测结果的预测值从 2979 kg·hm$^{-2}$ 到 3848 kg·hm$^{-2}$ 是一直上升趋势；这 2 个模型符合“双向预测模型”的条件，因此取其预测结果的平均，10 年的预测误差平均为 2.89%，最大预测误差 6.08%。

对黑龙江省粮食单产长期预测结果修正方法如下：先算出最近连续 3 年的预测误差，发现第 3 年到第 5 年的向负方向偏离，并且基本超过 1% 后的绝对误差递增，可以对第 6 到 10 年预测结果进行小趋势修正。修正的方法是第 6 年修正后预测值为 $Y_n=1-\frac{2.529%+0.802\times (n-5)}{(n\geq 6)}$，修正前逐年度产量分别为 2213、2563、2843、3073、3323 kg·hm$^{-2}$，修正后误差分别为：0.63%、0.644%、0.409%、-0.347%、-0.059%；修正后的预测误差最大为 0.64%。

3 讨论

在以上预测未来 1~10 年潜力时，有时使用 10 年移动平均产量利用 5 点和 10 点建立模型，有时使用 20 年移动平均产量利用 15 点和 20 点建立模型，这样就造成了结果不能互相比较的问题。

这里，为统一确定潜力的实际意义，暂且定义如下：（1）预测未来 1~5 年内潜力时使用 10 年移动平均产量，预测结果取双向模型预测的均值；（2）预测未来 1~10 年内潜力时使用 20 年移动平均产量，预测结果取双向模型预测的均值；（3）在发现连续 3 年误差单方向超过 1% 且递增或递减后，可以使用小趋势修正方法修正未来的预测；（4）无论使用 5 或 10 或 15 或 20 个点预测，都是基于 10 年或 20 年移动平均产量，所以中期预测和长期预测只与移动平均年有关，与所建模型的点数无直接关系。

这里，定义的潜力含义为：（1）以 10 年移动平均产量为基础的双向预测模型所预测的结果为 1~5 年的中期潜力；即中期潜力是在 10 年移动平均产量支撑线基础上预测的产量；（2）以 20 年移动平均产量为基础的双向预测模型所预测的结果为 1~10 年的长期潜力，即长期潜力是在 20 年移动平均产量支撑线基础上预测的产量。

4 结论

本文围绕粮食生产潜力中，长期预测建立了“双向预测理论和模型方法”，并通过大量案例验证了其科学性、准确性和实用性，该理论和方法可以预测未来 1~10 年的粮食生产潜力，平均预测误差在
4%以内，并可以采用小趋势修正方法对未来潜力进行修正。

参考文献：

