植物纤维膜农田应用试验研究

单秀枝 严慧峻 魏由庆

o中国农业科学院土壤肥料研究所,北京xwawExp

摘 要 植物纤维膜是一种由芦苇或农作物秸秆制成的新型薄膜。经田间试验及室内试验研究表明,植物纤维膜具有提高地温、保持土壤水分等塑料薄膜的特点,同时,它增加了膜的透气性,尤其是能够完全降解。

关键词 植物纤维膜 降解 农田

自 & 定 年代以来,塑料地膜覆盖技术在我国发展很快,由于其能增加地温、保持土壤水分、促进土壤养分分解,因此可使作物提早播种,提高产量。然而,随着种植面积的扩大和使用年限的增加,土壤中残存的塑料薄膜碎片越来越多,造成土壤板结,通透性变差,地力下降,严重影响了作物的生长、发育和产量。这一情况引起了世界各国政府和科学家的关注及忧虑,人们开始注重研制可降解薄膜的工作。中国国际科学技术促进会膜科学研究所经过多年努力,研制了用芦苇或农作物秸秆制成的植物纤维膜,为了检验其性能和效应及可降解性,我们做了春玉米的田间覆盖试验和室内膜降解试验。

x 材料和方法

x.x 田间春玉米试验

试验在中国农业科学院山东陵县试验区进行。试验地土壤为盐化潮土,肥力中等,轻度盐渍化,供试玉米品种为"农大 Γ w",采用常规的肥水管理。试验设z个处理Mxp不覆盖 Θ xp覆盖植物纤维膜 Θ zp覆盖塑料薄膜(聚乙烯地膜);z次重复,随机排列,小区面积wikacz z φ 1. **。春播(A 月 yy 日播种),播后即盖膜,并分别在地表及 $B\pi$ 1、xxv π 1、x $B\pi$ 1 土层安装温度计。每天EHaw, xA Haw, yvvHaw 进

行地表最高温、最低温和各层地温观测;每B ρ 取 $w\sim xw\pi$ · 和 $xw\sim yw\pi$ · 土壤一次,用于测定土壤水分状况;连续观测x 个月。同时进行各小区玉米生长状况、根系体积和过氧化氢酶活性的测定及植物纤维膜降解情况的记载。

x.y 室内膜降解试验

所用容器为直径 $xx\pi$ 1、高 $yw\pi$ 1、底面积 $ZB\pi$ 1、的烧杯,内装 $B\pi$ 1 厚的土层,按容重 $xwvv\pi$ 1、计算,合风干土重ByyvAv。加水 $xB\Gamma v\Delta v$ 1、使土壤水含量保持在zw%左右。将边长为 $\Delta\pi$ 1 的正方形植物纤维膜剪成相同面积的A份,平铺在土层中间。在烧杯上口封好塑料薄膜,以减少水分蒸发,每隔B0 称重,并补充损失的土壤水分。将试验处理放在温箱中,保持恒温zw0。试验设 Γ 1,每组y1个重复,每隔xwp2左右取出一组,将纤维膜洗净、风干,称重,和埋入土壤前的纤维膜重量相比,看纤维膜的降解情况。

y 试验结果与分析

v.x 对土壤温度的影响

观测结果表明(见表x),覆盖植物纤维膜能明显提高地温,但其效果不如覆盖塑料薄膜。在覆盖后的前 $xw\rho$ 内,处理y(覆盖纤

表x	覆盖纤维膜	对十壤温	度的影响。	Cb
1 X A	1を皿コニルス	小工场温	. /文. U J 示シ 비ツノ	$\sim \nu$

日期	Bπ: 土层温度o Cp		$xw\pi^{-1}$	xwπ 土层温度ο Cp		xBπ ± 土层温度。Cp			
日 期	处理x	处理y	处理	处理x	处理v	处理	处理x	处理y	处理
A月yz 日 ∼B月y 日	ywuy	yx uw	yx u∆	хЕлЕ	$xZu\Gamma$	уш В	$x\Delta uZ$	xZux	xZuy
B 月 z 日 \sim B 月 xy 日	xEuZ	xZuy	xZuE	xEuZ	xEuE	xZuB	$xEu\Gamma$	xEuE	xEuZ
B 月 xz 日 \sim B 月 yy 日	$yAu\Gamma$	$yAu\Gamma$	yBuz	yz wy	уу и $\!E$	yAuw	yx uE	$yxu\Gamma$	yy u∆

维膜)、处理z(覆盖塑料膜) $B\pi$ 1 地温平均每天分别为yxuw、yxu2 C,比处理x(不覆盖)ywuy C平均每天分别增加wuE 和xuB C;xw π 1 地温平均每天分别为 $xZu\Gamma$ ywuB C,比处理xoxEuE Cp分别增加wuE 和xu2 C; $xB\pi$ 1 地温平均每天分别为xZux 和xZuy C,比处理 $x(x\Delta uZ$ C)分别增加xuy 和xux C;温度增加的幅度为纤维膜小于塑料膜。覆盖后 $xw\sim yw\rho$ 内,处理y、处理z 比处理x 的 $B\pi$ 1 地温平均每天分别增加wux 和xux C; $xw\pi$ 1 和xux2 比处理x2 的 xux3 的 xux4 是地温增加不明显。覆盖后xux4 以及,人有覆盖塑料膜的处理x5 比对照处理x6 的地温有所增加,覆盖纤维膜的处理没有明显增温,甚至低于对照的地温。

同时,从表y 可以看出,覆盖纤维膜、覆盖塑料膜的处理地表最高温度和对照处理相比,覆盖后前 $xw\rho$ 内,平均每天分别高xB 和 $xwu\Delta$ C;覆盖后 $xw\sim yw\rho$ 内,平均每天分别高 ΔuA 和 ΓuZ C;覆盖后 $yw\sim zw\rho$ 内相差不明显。最低温差别不明显。

y.y 对土壤水分的影响

从田间试验测定结果来看,覆盖后x个 月内,处理y、z都比处理x(不覆盖)有明显

表 y 土壤最高温、最低温

日期	温度。Cp	处理x	处理y	处理
A 月 yz 日 \sim B 月 y 日	日最高温	$z\Gamma uy$	Br uy	$A\Gamma \imath Z$
	日最低温	xwuy	xwuw	xwu
B 月 z 日 \sim B 月 xy 日	日最高温	<i>yΔι</i> Δ	zBux	$zAu\Gamma$
	日最低温	$xx u\Delta$	xx iZ	$xyu\Gamma$
B 月 xz 日 \sim B 月 yy 日	日最高温	ABuE	Az uA	AE uy
	日最低温	$xyu\Gamma$	xz uw	xz $u\Gamma$

的抑制土壤水分蒸发,保持土壤含水量的作用(见图x)。 $w\sim yw\pi$:土壤含水量,处理 $y\approx$ 一个月内测定的平均值分别为 $xZuvZ\%、xZu\Gamma x\%$,比处理 $x(x\Gamma uE\Gamma\%)$ 分别提高 $x\approx uy\%$ 、 $x\Gamma u\approx \%$; $yw\sim Aw\pi$:土壤含水量,处理y、z 一个月内测定的平均值分别为 $xZuEv\%、<math>yvvu\Gamma B\%$,比处理x(xZuvA%) 分别提高 $Bu\Delta\%$ 、EuB%。由此同时可以看出,塑料薄膜的保水性能要比植物纤维膜好。另外,覆盖薄膜的保水效果前期要比后期好些。

y.z 对过氧化氢酶活性的影响

由于覆膜后通气性不够,土壤水分增 $8, \Pi \phi$,分压增高,土壤 Φ 值下降,从而抑制了过氧化氢酶的活性,导致过氧化氢累积,对作物生长会产生毒害作用。播种后半

月时,在每小区取土,土样风干后,用高锰酸钾滴定法测定过氧化氢酶的活性值,处理x、y、z 的结果分别为Buyys AuZBs AuEB《单位H1 $30v\partial$ Ω ϵ 2 ϕ A 1 ∂vv \pm 1 S 可见,覆盖塑料薄膜的处理过氧化氢酶活性值低于覆盖植物纤维膜的处理,二者均低于无覆盖处理。说明覆盖植物纤维膜透气性要比覆盖塑料膜好,覆盖植物纤维膜可以减轻过氧化氢对作物的危害。

y.A 对玉米生育进程及产量的影响

表 定 玉米生育进程情况

处理	播种期	出苗期	三叶期	抽雄期
x	A月yy 日	B月A日	<i>B月Z</i> 日	Γ 月 yA 日
У	A月 yy 日	B月 x 目	B 月 Δ 日	Γ 月 xZ 日
z	A月 yy 日	B月 y 目	B 月 Δ 日	Γ 月 yw 日

表 A 小喇叭口期植株状况

处理	株高οπιp	叶片数 介	功能叶叶面积στッρ
x	$Z\!\Delta$	xz uw	$\Delta y \Delta u \Delta$
У	xAB	xBuA	E $lpha BuA$
z	xBx	xBuy	Εκεχ 11Δ

从最后产量结果看,覆盖纤维膜与覆盖塑料膜有同样的增产效果。处理y、处理z 和处理x 相比每公顷分别增产 $\Gamma xZ \iota B$ 、 $AZ\Gamma \iota B$ ωv ,可见,纤维膜的增产幅度比塑料膜高。方差分析表明,T 值为 $\Gamma \iota v_i z B^* o T_{wull} K B \iota w Ap$,整

体间差异达显著水平(见表B;进一步用新复极差法分析,有覆盖和无覆盖处理差异显著,覆盖纤维膜和覆盖塑料膜差异不显著。

表B 小区试验产量情况o 单位Boop

处 理		重 复		- 公顷产量
处 连	x	У	z	公顷)里
x	yEz uw	yΖΕια	z ywnw	$AB\omega\Gamma$
У	zyAuw	$zAxu\Gamma$	$zBZ\imath\Delta$	$Bxy\Delta$
z	$zz\Delta uy$	$zy\Delta uA$	$zz\Gamma u\omega$	Beauty uB

y.B 纤维膜降解状况

y.B.x 田间降解情况

植物纤维膜的最大优点是降解快,无残留。覆盖后第 $y\rho$ 遇到四级风出现了断裂现象,以后又逐渐有多处小的裂缝出现,主要是由于纤维膜缺少韧性,纵向收缩,产生断裂。x个月后开始有破裂现象,以后经中耕、淋雨、高温,到玉米收获期(E月yx日)已很难从地里找到成块的残膜。即使有些残留,也在下茬作物种植后消失,残留量可视为零。

y.B.y 室内降解情况

埋在土壤中的植物纤维膜,在含水量 zw%,温度zw C的条件下,经过微生物作用,很快发生腐解。试验在xwp 时,纤维膜降解 率是zz 证%;xEp 时已降解公 证%;zwp 时,降解 Zvuy%;AFp 时,降解 Zvuy%;AFp 时,降解 Zvuy%;AFp 时,降解 Zvuy%;AFp 时,降解 ZhuB%;y 个月后基本降解完毕。这样,即使当季作物收获时,纤维膜没有完全降解,残留的纤维膜碎片,埋在土壤中会很快降解,不会影响下一季作物的生长,并且,纤维膜降解后能够提供作物需要的养分,同时还能起到改善土壤结构的作用。但是,纤维膜降解过早,农田覆盖作用的有效期太短,在研制过程中需进一步加强其强度和韧性。

z 结 语

z uz 覆盖植物纤维膜能明显提高地温、抑制 o 下转第zz 页p