蔬菜中总磷、总氮联合消解方法的研究

杨广杏 陈桂枝 钟远清

(中山大学环境科学研究所,广州 ΒαωγΔΒρ

关键词 蔬菜 总磷 总氮 消解

在测定蔬菜中总磷o a fp、总氮o a gp 之 前必须对样品进行消解转化的处理。也就是 说,将样品中的氨氮、亚硝酸盐氮和有机氮化 合物氧化为硝酸盐,将缩合磷酸盐、如焦磷酸 盐、偏磷酸盐和多聚磷酸盐)和有机磷化合物 氧化为正磷酸盐的处理步骤是及其重要的。

目前对蔬菜中总磷、总氮的监测,通常是采用 Φ_{y} S ϕ_{A} 一 Ω_{y} S ϕ_{A} 进行总氮的消化处理,紫外分光光度法测定。而总磷的消化是采用硝酸镁消解法,氯化亚锡还原光度法测定。这些方法耗时费力,操作麻烦。本法采用碱性过硫酸钾联合消解法,即在同一个反应容器中,用同一种试剂,同时进行 $\alpha \phi$ 、 $\alpha \theta$ 的消解反应。

x 仪器与试剂

xux 仪器

 $\delta T\eta - EactP_y$ 型紫外分光光度计, Δyy 型分光光度计,手提式高压消毒器。

xw 试剂

硝酸钾标准溶液 HI_{ϑ} K $xxaw \mu v v \iota \partial$; 磷酸盐($\Omega \Phi_{\vartheta} \phi \phi_{\vartheta}$) 标准溶液 HII_{ϑ} K B $wv v \iota \partial$; 碱性过硫酸钾溶液Hww 130v ∂ Ω_{vS} ϕ_{E} $-\vartheta\xi\phi\Phi$;

钼酸铵溶液H 将 Eu_yBv 钼酸铵溶于 ΔB 1 ∂ 水中,另量取 $x\tau aw$ 1 ∂ 浓 $\Phi_y s$ ϕ_A 缓缓注入 $z\tau aw$ 1 ∂ 水中。冷却至室温后,将钼酸铵溶液在搅拌下注入硫酸溶液中,加水至Bav 1 ∂ ;

氯化亚锡溶液H称取 $w_1Bv_3 = II_y$,加 y_1B 1 ∂ 浓盐酸,完全溶解后,加水至 $yB_1 \partial$; x+Z盐酸;

y 仪器工作参数

见表x。

工作参数	α φ	αθ
分析波长	Δaaa 1	yyw 1 sy <u>∆B</u> ≥ 1
光源	溴钨灯	氘灯
仪器带宽	\mathcal{Y}^{2-1}	y^{2-1}
比色皿	ут: 玻璃比色皿	<i>x</i> πι 石英比色皿

z 反应机理

过硫酸钾在 Γw C以上的水溶液中,分解成氢离子和氧。 $x = 30v \partial$ 的 $\Omega_y s_y \phi_E$ 分解生成 $y = 30v \partial$ 的氢离子。本反应在加热条件下放 出氧,是不可逆反应,如果采用碱性过硫酸钾作为氧化剂,氢氧化钠的加入,中和了产生的 Φ^+ ,使反应继续进行。也就是说,加入 $\theta \xi \phi$ 使进过硫酸钾进一步分解,达到完全分解的程度。本法采用 $w u x = 30v \partial \Omega_y s_y \phi_E = -\theta \xi \phi$ 作为氧化剂,在压力为 $x w v E \times x w^A - x y v \Delta \times x w^A \phi \xi$,温度为x y w - x y A C下,反应 $w v B \varphi$ 。由于反应开始时溶液呈碱性,随着温度升高,过硫酸钾分解产生大量 Φ^+ ,使溶液呈酸性。这样就能依次完成样品中氮磷的消解转化过程。

A 操作程序

Aux 标准系列的配制

表y 标准系列的配制 $o \mid \partial p$

管 号	w	x	у	z	A	В	Γ
混合标准溶液	w	x uw	y uw	$Au \omega$	Γuw	Εικυ	xwuw
无氨水	yB	yA	yz	yx	xZ	$x\Delta$	xB
碱性过硫酸钾	хw	xw	xw	xw	xw	xw	xw

于 Δ 支Bw1 ∂ 具塞比色管中,按表y 中所列数量加入试剂,加盖摇匀后用纱布扎紧管口,防止消化过程中 $\Omega_{s}s_{s}$ ϕ ε 分解出的氧气逸出。将比色管置于高压消毒器中,等锅内压力达到xw1 $E \times xw$ 1 ϕ 5e0 相应温度为xy2w0 时保持w1e0 多停止加热。待压力表指针降至零后,取出放冷。用水稀释至Bw1 ∂ 。另取一套y1e1 一色管分别取y1e1 e1 消解液。分别加入x1e2 盐酸溶液x1e1 e2 测定。将Bw1 e2 比色管中剩下的y1e1 e2 测定。将Bw1 e2 比色管中剩下的y1e2 消解液分别加入钼酸铵溶液y1e1 e2 ,摇匀,再加入x1e2 氯化亚锡溶液。摇匀,x1e2 后在x1e2 型分光光度计上进行 x1e4 的测定。

Aw 样品的测定

称取yuwv 经风干、粉碎、过筛的蔬菜样品,置于 $Bw \vdash \partial$ 具塞比色管中,加入 $yB \vdash \partial$ 水使样品充分润湿后加入 $xw \vdash \partial$ 氧化剂溶液。立即加盖摇匀,用纱布扎紧管口,置高压消毒器内在 $xwvE \times xw^A - xyu\Delta \times xw^A g \in E$ 压力和xyw - xyA C下消解 $wvB \varphi$ 。停止加热,等冷却后取出过滤,滤液用水稀至 $Bw \vdash \partial$ 。其余操作与标准系列一致。

B 结果与讨论

Bux 消解条件

于含有缩合磷、三聚磷和有机磷的标样中,分别加入不同量的氧化剂在xyw-xyA C 和 $xwvE \times xw^A-xyv\Delta \times xw^A$ $\phi\xi$ 压力下进行消解反应,结果表明,加入 $B-E \mid \partial wva \mid 30v\partial$ 碱性过硫酸钾时,氮的转化率较低。但加入量超过 $xy \mid \partial$ 时, $\alpha\phi$ 的结果再现性较差,过高的碱度干扰磷的转化。因此氧化剂的用量应控制在 $Z-xx \mid \partial$ 之间,才能获得令人满意的结果。为此,我们确定联合消解的条件为H加入 $xw \mid \partial wva \mid 30v\partial \Omega_y s_y \phi_E - \vartheta\xi \phi \Phi$ 作为消解剂。

由于样品溶液在消化时的酸碱度直接 影响 $\emptyset \not = \emptyset$ 的转化效率,下面对消解时溶液的 酸碱度进行分析计算。

根据反应机理,在 Γ w Γ 以上水溶液中,x 1 30 v ∂ Ω $_{x}$ $_{x}$ ϕ $_{E}$ 可分解放出 $_{y}$ $_{1}$ 30 v ∂ Φ $_{+}$ 。本 法是在 $_{y}$ $_{B}$ $_{1}$ ∂ 样品溶液中,加入 $_{x}$ $_{x}$ $_{1}$ ∂ v ∂ Ω $_{x}$ $_{x}$ ϕ $_{E}$ ∂ ϕ 氧化剂。反应开始时,溶液呈碱性是不可置疑的,随着温度上升, Ω $_{x}$ $_{x}$

表 定 加标回收率试验结果

方法	$\alpha \phi \in vo \theta \phi_z p_y$	$\alpha \vartheta \Phi_{y} s \phi_{A} - \Omega_{y} s_{y} \phi_{A}$	αφ 、αθ 联合消解法			
<i>J</i> 14	消解法	消解法	αø	αθ		
样品x *0μυp	у иАГ	yΕuΓ	y ucz	zwix		
样品y * *ομυp	z uEB	Ax uy	z $u\Gamma Z$	yZuE		
样品x+θ标准Axoφυρ		$\Gamma A \iota d\Gamma$		$\Gamma AucA$		
样品ε +Φ 标准Αομυρ	Γ uy Z		BuZz			
样品y +3 标准配のμυρ		xxwı Z		x υ Δu A Γ		
样品ν+Φ标准Εομυρ	xx uxy		xx uxz			
平均回收率 %	$Z\!B\imath Z\!\imath v$	$Z_{\mathcal{Y}}$ $u\!E\!B$	$Z\!B\imath Z\!B$	Z z v ι Γ		
平均相对偏差 %	$x u\Delta$	$w\iota\Delta\Gamma$	$xu\mathbf{Z}$	$wu\Delta\Gamma$		

注H*样品x 是小白菜(全棵) Ø * *样品y 是通心菜秆叶

表 A 精密度试验结果

序号	x	у	z	A	В	Γ	Δ	E	Z	xw	xx	平均值	标准偏差	变异系数 <i>o %p</i>
αθομυ/1 θρ	wwxE	wwxB	wwZE	шихух	wuxz	τυ πυΖ Δ	wwxx	$wux\Gamma$	wwwZE	wwZZ	wwxA	wwwZ	$Z \times xw^{-z}$	EuAx

B_{uy} 分析方法准确度和可靠性论证 B_{uy} ux 加标回收率试验

表z 中列出的数据是Z次重复测定的均值。由表z 可见,于样品中分别加入 $Awww_{\mu\nu}$ 和 $Ewww_{\mu\nu}$ 的氮标准物时,本法的平均回收率 $\alpha \phi$ 为ZBuZB%, $\alpha \vartheta$ 为 $Zwu\Gamma\%$ (常规方法 $\alpha \phi$ 、 $\alpha \vartheta$ 的平均回收率分别为ZBuZw%和ZyuEB%),说明用本法进行联合消解, $\alpha \phi$ 、 $\alpha \vartheta$ 的分析结果是准确的。

Buy uy 精密度试验

由表A数据可见,同一样品xx次重复试

验的结果,标准偏差 $\alpha \vartheta$ 为 $Z \times xw^{-}$, $\alpha \vartheta$ 为 $xuZ \times xw^{-}$ 。变异系数 $\alpha \vartheta$ 为EuAx %, $\alpha \vartheta$ 为EuaT %。均属正常范围。说明用本法进行联合消解, $\alpha \vartheta$ 、 $\alpha \vartheta$ 的分析结果再现性好,可靠性高。

作者简介

杨广杏,女,BA岁,高级工程师。中山大学环境科学研究所环境化学室主任,主要从事环境化学教学和研究工作,近年发表论文 yw 余篇。

 $\alpha \varphi \sigma s s s \rho_{2} \Rightarrow_{2} s \chi_{1} \Rightarrow_{0} s \xi z \sigma_{3} \Rightarrow_{1} P \chi_{0} \sigma_{1} s \chi_{2} \Rightarrow_{2} \sigma \sigma_{2} \varphi \varphi_{2} \varphi_{3} \Rightarrow_{1} \xi \varphi_{1} \varphi_{3} \varphi_{3} \varphi_{2} \varphi_{3} \varphi_{3$

 $\Omega \sigma_3$ 136 ρ_7 H_0 $\sigma_U \sigma_8$ $\hat{\xi}$ $o_0 \sigma_S$ 838 $\hat{\xi}$ 04 φ_3 74 φ_3 697 S 838 $\hat{\xi}$ 02 χ_8 63 $U \sigma_2$ S $\rho \chi_U \sigma_7$ 8 χ_3 2