

中文核心期刊/CSCD

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

桂林会仙湿地表层土壤中有机氯农药污染现状

程铖, 刘威杰, 胡天鹏, 邢新丽, 毛瑶, 石明明, 许安, 苏业旺, 李星谕, 余海阔, 祁士华

引用本文:

程铖, 刘威杰, 胡天鹏, 等. 桂林会仙湿地表层土壤中有机氯农药污染现状[J]. 农业环境科学学报, 2021, 40(2): 371-381.

在线阅读 View online: https://doi.org/10.11654/jaes.2020-0751

您可能感兴趣的其他文章

Articles you may be interested in

桂林会仙岩溶湿地水体中有机氯农药分布特征及混合物环境风险评估

符鑫,梁延鹏,覃礼堂,曾鸿鹄,莫凌云,王敦球,覃璐玫 农业环境科学学报. 2018, 37(5): 974-983 https://doi.org/10.11654/jaes.2017-1339

内蒙古农牧业区土壤中有机氯农药的分布特征及健康风险评估

孟佩俊, 李淑荣, 和彦苓, 张艾华, 张丽萍, 靳敏, 梁青青, 张凌燕 农业环境科学学报. 2017, 36(3): 539-546 https://doi.org/10.11654/jaes.2016-1218

青狮潭库区沉积物/稻田土壤中 有机氯农药残留与释放规律

梁延鹏, 符鑫, 曾鸿鹄, 覃礼堂, 莫凌云 农业环境科学学报. 2019, 38(6): 1330-1338 https://doi.org/10.11654/jaes.2018-1346

内蒙古河套灌区耕作层土壤中PCBs的污染特征和健康风险

李亚芳, 裴国霞, 张琦, 徐明 农业环境科学学报. 2021, 40(1): 114-122 https://doi.org/10.11654/jaes.2020-0819

吉林市城郊蔬菜土壤中多氯联苯残留特征及生态风险评价

陈晓荣, 王洋, 刘景双, 刘强, 崔政武, 杜连生 农业环境科学学报. 2015(6): 1127-1133 https://doi.org/10.11654/jaes.2015.06.016

关注微信公众号,获得更多资讯信息

程钺, 刘威杰, 胡天鹏, 等. 桂林会仙湿地表层土壤中有机氯农药污染现状[J]. 农业环境科学学报, 2021, 40(2): 371-381. CHENG Cheng, LIU Wei-jie, HU Tian-peng, et al. Status of organochlorine pesticide pollution on surface soil of Huixian wetland in Guilin, China[J]. Journal of Agro-Environment Science, 2021, 40(2): 371-381.

桂林会仙湿地表层土壤中有机氯农药污染现状

程铖¹, 刘威杰¹, 胡天鹏¹, 邢新丽^{2,3*}, 毛瑶³, 石明明^{1,3}, 许安¹, 苏业旺¹, 李星谕¹, 余海阔¹, 祁士华^{1,3}

(1.中国地质大学(武汉)环境学院,盆地水文过程和湿地生态恢复实验室,武汉 430078;2.联合国教科文组织国际岩溶研究中心, 自然资源部岩溶生态系统与石漠化治理重点实验室,广西 桂林 541004;3.中国地质大学(武汉)生物地质与环境地质国家重点实 验室,武汉 430078)

摘 要:为了解会仙湿地表层土壤中有机氯农药(OCPs)的残留现状,于2019年11月,根据不同土地利用类型,在桂林会仙湿地18 个点位分别采集了不同深度的表层土壤样品,采用GC-ECD法对土壤中24种OCPs进行检测分析,对其残留特征、可能来源和生态风险进行了相关研究。结果表明,研究区土壤中24种OCPs检出率均高于80%,总OCPs含量范围为3.56~69.7 ng·g⁻¹,均值为14.0 ng·g⁻¹,与其他研究区相比,OCPs残留量处于较低水平,其中主要组分为滴滴涕(DDTs)和甲氧滴滴涕(MXC)。农用地土壤中OCPs残留量较高,且OCPs在0~10 cm深度残留量高于其他深度。研究区土壤中OCPs主要来源于工业DDTs等传统农药的历史残留。生态风险评价结果表明研究区土壤中六六六(HCHs)生态风险较低,DDTs存在一定的生态风险。

关键词:表层土壤;有机氯农药;残留特征;来源解析;会仙湿地

中图分类号:X592;X53 文献标志码:A 文章编号:1672-2043(2021)02-0371-11 doi:10.11654/jaes.2020-0751

Status of organochlorine pesticide pollution on surface soil of Huixian wetland in Guilin, China

CHENG Cheng¹, LIU Wei-jie¹, HU Tian-peng¹, XING Xin-li^{2,3*}, MAO Yao³, SHI Ming-ming^{1,3}, XU An¹, SU Ye-wang¹, LI Xing-yu¹, YU Hai-kuo¹, QI Shi-hua^{1,3}

(1.Laboratory of Basin Hydrology and Wetland Eco-restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; 2.Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources, IRCK by UNESCO, Guilin 541004, China; 3.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China)

Abstract: In order to better understand the status of organochlorine pesticide (OCP) pollution on surface soil of Huixian wetland, surface soil samples of different depths from different types of land uses were collected from 18 sites in Huixian wetland in November 2019. 24 OCPs in soil were detected by GC-ECD, and their residual characteristics, sources, and ecological risks were analyzed. The detection rates of OCPs were above 80%, and the total concentrations of 24 OCPs ranged from $3.56 \text{ ng} \cdot \text{g}^{-1}$ to $69.7 \text{ ng} \cdot \text{g}^{-1}$, with a mean value of 14.0 ng $\cdot \text{g}^{-1}$. Compared with the soil of other studied areas, the residues of OCPs in Huixian wetland were at a lower level, while dichlorodiphenyltrichloroethanes(DDTs) and methoxychlor(MXC) accounted for a higher proportion of OCPs. The distribution of OCPs was characterized by a high residue in agricultural soil and soil with a depth of 0~10 cm. The historical residues of industrial DDTs and other traditional pesticides were the main sources of OCPs in the soil; however, new input could not be ignored. Results of ecological risk assessment indicated that the ecological risk of HCHs in soil was low; however, DDTs might have some potential ecological risk impact on the studied area.

Keywords: surface soil; organochlorine pesticides; residual characteristics; source apportionment; Huixian wetland

收稿日期:2020-07-03 录用日期:2020-10-19

作者简介:程铖(1996—),男,安徽池州人,硕士研究生,从事生态环境地质保护研究。E-mail:chengcheng@cug.edu.cn

^{*}通信作者:邢新丽 E-mail:xlxing@cug.edu.cn

基金项目:自然资源部岩溶生态系统与石漠化治理重点实验室开放课题基金项目(KDL201902);国家自然科学基金项目(41773124)

Project supported: The Open Project of Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, Ministry of Natural Resources (KDL201902); The National Natural Science Foundation of China(41773124)

20世纪后半叶,有机氯农药(Organochlorine pesticides, OCPs)作为一种高效、低成本的广谱杀虫剂广 泛应用于我国农业生产中,但其作为一类典型的持久 性有机污染物(Persistent organic pollutants, POPs),具 有半挥发性、持久性、生物富集性和高毒性等特性,对 生态环境和人体健康存在严重危害[1-3]。虽然我国已 于1983年全面禁止OCPs的生产和使用,但由于其在 环境中难降解,且存在大气传输和近期农业生产中新 OCPs的非法输入等影响因素,目前在各种环境介质 中均能检出不同浓度的OCPs^[4-7]。农业活动中施用的 OCPs通常沉降在土壤中,同时存在大气扩散和干湿 沉降等迁移转化过程,因此,土壤逐渐成为环境中 OCPs 主要的汇区^[8]。此外,土壤中的 OCPs 也会通过 与水体和大气等介质进行物质交换[7.9]而逐渐成为 OCPs的二次污染源。因此,研究土壤中OCPs的含量 水平和污染程度具有重要意义。

会仙岩溶湿地是桂林市岩溶湿地的重要组成部分,称为"桂林之肾",同时也是我国岩溶湿地的典型 代表,是亚热带低海拔地区最大的岩溶湿地^{10]}。近几 十年来,在人类活动水平不断提高和岩溶湿地蓄水能 力持续降低的影响下,会仙湿地区域内出现了生态环 境恶化的问题^[11]。为科学修复和保护湿地,2012年4 月会仙湿地被列为国家湿地公园试点建设工程。湿 地周边的主要经济来源为农业,所以农药的使用会影 响到土壤、水体和大气等介质中OCPs的含量。目前, 一些学者对湿地水体中的OCPs污染^[12]和土壤中重金 属元素污染^[13]进行了相关研究,但是对土壤中OCPs 污染现状缺少相关研究和报道。

本文以会仙湿地中农用地、荒草地和居民区3种 不同土地利用类型的表层土壤为研究对象,分析测定 了24种 OCPs 的含量,讨论了 OCPs 的分布特征和组 成特征,并进行了来源分析和生态风险评价,为研究 区 OCPs 污染评价和防控管理提供了科学依据。

1 材料和方法

1.1 样品采集

根据会仙湿地常见的3种土地利用类型(农用 地、荒草地和居民区)的分布特点,于2019年11月在 会仙湿地核心区域布设了18个采样点(如图1所示), 分别采集0~10、10~20、20~30 cm 3种深度的表层土 壤样品,共计54个样品,包括33个农用地样品、12个 荒草地样品和9个居民区样品。每个点位选择5 m× 5 m的正方形范围,均匀取四角和中心方位的样品混 合成一个点位样品。样品采集使用清洁不锈钢铲,采 集后的样品包在铝箔中,并装入干净的聚乙烯密实 袋中保存,记录编号等信息。样品尽快运往实验 室,-4℃冷冻贮存直至分析测试。

1.2 样品前处理

样品经风干后,研磨并去除石块等杂物。称取 10.00g样品和适量干燥的无水硫酸钠包裹于滤纸盒 中,加入20ng回收率指示物[四氯间二甲苯(TCmX) 和十氯联苯(PCB209)],并用约120mL二氯甲烷作为 萃取剂在45℃水浴下索氏抽提24h。提取液中加入 适量无水硫酸钠,经旋转蒸发仪(德国 Heidolph RE-

图 1 研究区采样点位示意图 Figure 1 Sampling sites in Huixian wetland

52),于40℃下浓缩至约5 mL,加入约5 mL正己烷, 进行溶剂置换,继续旋蒸至约2 mL。浓缩液通过去 活化的硅胶和氧化铝(体积比为2:1)层析柱净化分 离,用二氯甲烷和正己烷(体积比为2:3)混合液进行 淋洗。淋洗液经旋转蒸发浓缩至0.5 mL,转移至2 mL细胞瓶中,用高纯氮气吹至0.2 mL,加入20 ng内 标化合物[五氯硝基苯(PCNB)],低温保存待测^[8]。

1.3 仪器分析条件

式样使用气相色谱仪(美国 Agilent 公司, HP7890A 配⁶³Ni-ECD 检测器)进行定量分析。色谱 柱为DB-5石英毛细管柱(30.00 m×0.32 mm×0.25 µm),柱温升温程序:初始温度100 ℃,保持1 min,以 4℃・min⁻¹升温至200℃,以2℃・min⁻¹升温至230℃, 最后以8℃・min⁻¹升温至280℃,保持15 min。载气为 高纯氦气,气流流速为1.0 mL・min⁻¹。进样口温度 290℃,不分流进样,进样量为1.0 µL。ECD 检测器温 度 300℃。

1.4 质量保证和质量控制(QA/QC)

所有的样品分析测试实行严格的质量保证和质量控制。预处理中加入回收率指示物(TCmX和PCB209),用于监测实验过程中的损失,回收率范围为60%~101%。每批样品(16个)中添加一个空白样和一个平行样,平行样分析中OCPs的相对偏差基本低于20%。最终数据结果均经过回收率校正。

2 结果与讨论

2.1 会仙湿地 OCPs 残留特征

本文将 24 种 OCPs 分为以下 7 类进行讨论^[14]: HCHs(α -、 β -、 γ -与 δ -HCH之和)、DDTs(o, p'-DDT、 p, p'-DDT、o, p'-DDD、p, p'-DDD、o, p'-DDE 与 p, p'-DDE之和)、DRINs(艾氏剂、狄氏剂、异狄氏剂、异 狄氏剂醛与异狄氏剂酮之和)、SULPHs(α -硫丹、 β -硫丹与硫丹硫酸盐之和)、CHLs(顺式氯丹、反式氯 丹、七氯与环氧七氯之和)、HCB(六氯苯)和MXC(甲 氧滴滴涕)。表1中列出了0~10、10~20、20~30 cm 3 种深度的表层土壤中7类OCPs的含量。研究区土壤 中OCPs的检出率范围为83.0%~100.0%,说明会仙湿 地土壤中普遍存在OCPs的残留。由表1可以看出, 0~10、10~20、20~30 cm 表层土壤中 OCPs 总浓度分别 为15.42±10.14、13.73±14.53、13.06±16.80 ng·g⁻¹,其中 表层土壤中OCPs总体含量水平与土壤深度总体上成 反比关系,表明0~10 cm 深度的土壤是有机氯农药的 主要分布区域,这可能与OCPs在土壤剖面垂向上的 迁移转化有关,土壤有机质和土壤黏度等土壤理化性 质都会影响OCPs向下迁移^[15]。此外,岩溶区土壤剖 面具有特殊的结构层次,碳酸盐岩风化成土是由下往 上进行的^[16],所以上部土壤较老,OCPs的历史残留使 得上部土壤中含量较高。本研究中,DDTs和MXC的 标准偏差明显高于平均浓度,说明研究区土壤中 DDTs和MXC的含量分布存在较大差异。

与国内外其他研究区土壤进行比较(表2),得出 会仙湿地中HCHs和DDTs含量均处于较低水平。研 究区气候属于亚热带季风性湿润气候,气温较高且雨 水丰沛,土壤中微生物活跃度较高,能加速HCHs和 DDTs的降解,并且会仙湿地区域内地表水排泄不畅, 大量雨水下渗带来的淋溶作用使得土壤中的HCHs 和DDTs发生快速迁移^{117]}。此外,研究区周边是以水 稻种植为主,历史上OCPs使用量不高且轮作种植水 稻的方式使得土壤长期处于干湿交替条件下,有利于 OCPs的厌氧和好氧降解^{118]}。因此,该研究区土壤中

OCPs	0~10 cm			10~20 cm			20~30 cm		
	范围Range	均值Mean	标准偏差SD	范围Range	均值Mean	标准偏差SD	范围Range	均值Mean	标准偏差SD
HCHs	0.41~2.87	1.09a	0.72	0.21~2.42	0.75a	0.50	0.28~0.73	0.44b	0.13
DDTs	0.76~40.84	5.79a	8.82	0.98~48.97	6.52a	11.11	0.49~53.50	4.98a	11.90
DRINs	0.29~2.37	2.30a	3.28	0.12~5.76	1.34a	1.31	0.43~2.12	1.00a	0.53
SULPHs	0.17~1.61	0.54a	0.37	0.03~1.61	0.54a	0.45	0.13~3.15	0.48a	0.67
CHLs	0.51~14.71	1.13a	0.68	0.27~2.46	0.95a	0.61	0.26~2.54	0.68a	0.52
HCB	0.23~14.21	1.43a	3.24	0.20~3.03	0.53a	0.68	0.11~1.43	0.35b	0.28
MXC	0.27~15.87	3.15a	3.59	N.D.~13.39	3.10a	3.60	0.05~31.92	5.13b	7.37
总 OCPs	3.76~48.59	15.42a	10.14	3.65~66.75	13.73a	14.53	3.56~69.71	13.06a	16.80

Table 1 Concentrations of OCPs in soil at different depths from Huixian wetland(ng•g⁻¹)

注:N.D.代表未检出;同行不同小写字母表示不同深度含量差异显著(P<0.05)。

Note: N. D. is not detected, the different lowercase letters in a row indicate that significant differences among different depths at P<0.05.

农业环境科学学报 第40卷第2期

研究区 Research regions	采样年份 Year	采样深度 Depth/cm	$\frac{\text{HCHs}}{(\text{ng} \cdot \text{g}^{-1})}$	$\frac{\text{DDTs}}{(\text{ng} \cdot \text{g}^{-1})}$	文献来源 References
意大利那不勒斯市区 Naples metropolitan area, Italy	2014—2015	5~10	0.36±1.24*	11.2±23.8 ^b	[19]
伊朗南部农田 Agricultural soils, southern Iran	2016	0~10	0.41ª	4.37 ^b	[20]
巴基斯坦旁遮普 Punjab, Pakistan	2011	0~5	7.80±5.50°	$40.0 \pm 60.0^{\rm b}$	[21]
珠三角经济区 PRD economic zone, China	2008—2009	0~20	1.87±3.83ª	12.3±37.0 ^d	[17]
青藏高原湖泊流域Lake catchments in the Tibetan Plateau , China	2007	0~5	0.31±0.22ª	0.07 ± 0.06^{d}	[22]
内蒙古农业区 Farming districts in Inner Mongolia, China	2015	0~20	8.63±17.3 ^a	9.71 ± 17.8^{d}	[23]
内蒙古牧业区 Animal husbandry districts in Inner Mongolia, China	2015	0~20	1.67±3.81°	2.47 ± 6.52^{d}	[23]
重庆岩溶地下河流域Karst underground river basin,China	2013	0~20	17.0±31.7 ^a	48.4 ± 10.4^{d}	[24]
神农架大九湖湿地 Dajiuhu sub-alpine wetland, China	2016	0~20	7.03±5.59*	4.75±5.26 ^b	[25]
桂林青狮潭库区稻田 Qingshitan reservoir region, China	2016	10~20	39.9ª	17.2 ^e	[26]
桂林会仙湿地 Huixian wetland, China	2019	0~10	1.09±0.72*	5.79 ± 8.82^{b}	本研究
		10~20	$0.75 \pm 0.50^{\circ}$	6.52±11.1 ^b	
		20~30	0.44±0.13 ^a	4.98 ± 11.9^{b}	

表2国内外不同研究区土壤中HCHs和DDTs含量对比 Table 2. Comparison of concentrations of HCHs and DDTs in soil from different regions

注:a表示α-、β-、γ-和δ-HCH之和;b表示o,p'-DDT、p,p'-DDT、o,p'-DDT、o,p'-DDD、o,p'-DDD、o,p'-DDE和p,p'-DDE和p,p'-DDE之和;c表示α-、β-和γ-HCH之和;d表示o,p'-DDT、p,p'-DDT、p,p'-DDD和p,p'-DDD和p,p'-DDE之和;e表示p,p'-DDT、p,p'-DDD和p,p'-DDE之和;e表示p,p'-DDT、p,p'-DDD和p,p'-DDE之和;e表示p,p'-DDT

Note: a is the sum of α -, β -, γ -, and δ -HCH; b is the sum of o, p'-DDT, p, p'-DDT, o, p'-DDD, o, p'-DDD, o, p'-DDE and p, p'-DDE; c is the sum of α -, β -, γ -HCH; d is the sum of o, p'-DDT, p, p'-DDT, p, p'-DDD and p, p'-DDE; e is the sum of p, p'-DDD and p, p'-DDE.

的OCPs含量较低。

研究区3种土地利用类型的表层土壤中OCPs的 分布情况如图2所示。3种土地利用类型中,农用地 土壤中总OCPs含量总体上较高,主要是因为农业生 产中农药的长期使用导致大量OCPs的残留。荒草地 和居民区土壤主要是农用地闲置形成的,所以OCPs 含量低于农用地。各点位中S12和S16点位的总 OCPs含量较高,且DDTs和MXC的贡献较大。S12点 位中高含量OCPs主要受农业活动的影响,其中DDTs 含量为31.3 ng·g⁻¹,HCHs含量为0.65 ng·g⁻¹,均低于 《土壤环境质量 农用地土壤污染风险管控标准(试 行)》(GB 15618—2018)中规定的风险筛选值(100 ng·g⁻¹)。S16点位属于居民区闲置地,这类土地多为 农用地闲置而成,且该点位周边分布大片农用地,故 OCPs残留量受到影响。《土壤环境质量 建设用地土 壤污染风险管控标准(试行)》(GB 36600—2018)中规 定城市建设的居住用地土壤中 DDT 类农药(o,p'-DDT、p,p'-DDT、p,p'-DDD 和p,p'-DDE之和)与六 六六类农药(α -、 β -和 γ -HCH之和)污染风险筛选值 分别为6500 ng·g⁻¹和1030 ng·g⁻¹,S16点位土壤中两 者含量分别为20.8 ng·g⁻¹和0.48 ng·g⁻¹,均低于该值, 表明对人体健康的风险可忽略。

2.2 OCPs组成特征和来源解析

如图3所示,在荒草地土壤中,MXC的占比最高, 达到31.4%,其次为DDTs,所占比重为28.8%,CHLs、 HCHs、DRINs、HCB和SULPHs所占比重分别为

图 3 会仙湿地表层土壤中 OCPs 组成

Figure 3 OCPs composition in surface soil from Huixian wetland

12.0%、8.60%、7.76%、7.01%和4.44%;在农用地中, OCPs中所占比重最高的组分是DDTs(39.2%),其次 是MXC(30.5%),其他组分按照所占比重由大到小分 别为CHLs(12.1%)、DRINs(6.72%)、HCHs(5.33%)、 SULPHs(3.72%)和HCB(2.33%);居民区表层土壤中 OCPs各组分所占比重大小依次为:DDTs(41.9%)、 MXC(22.4%)、HCB(16.4%)、DRINs(6.17%)、CHLs (6.03%)、SULPHs(4.34%)和HCHs(2.79%)。在研究 区表层土壤中,DDTs和MXC是两种主要的OCPs组 分,可以反映出该区域农业生产中农药的使用习惯。 2.2.1 DDTs组成特征和来源解析

2021年2月

本研究中,DDT 异构体和代谢产物(o,p'-DDT、 p,p'-DDT、o,p'-DDD、p,p'-DDD、o,p'-DDE和p, p'-DDE)的检出率均高于 80.0%,其中p,p'-DDT和 p,p'-DDD 100%被检出。研究区表层土壤中 DDTs 的组成特征见图4(a)~图4(c)。在所有样品中,DDTs 中p,p'-DDT所占比重最高,平均占比可达47.7%。 荒草地土壤样品中 DDTs组成特征为:p,p'-DDT>o, p'-DDE>p,p'-DDE>o,p'-DDT>o,p'-DDD>p, p'-DDD,农用地土壤样品和居民区土壤样品中, DDTs 的组成略有差异,分别为p,p'-DDT>p,p'-DDE>o,p'-DDE>o,p'-DDT>p,p'-DDD>p,p'-DDT>o,p'-DDT>o,p'-DDD>o,p'-DDT>o,p'-DDT>o,p'-DDD>o,p'-DDT>o,p'-DDT>o,p'-

我国农业生产中使用过的DDTs主要分为两类, 即工业DDTs和三氯杀螨醇。工业DDTs是一类包含 65%~80% p,p'-DDT、15%~21% o,p'-DDT和其他化 合物的混合异构体。三氯杀螨醇结构与DDTs相似, 因此在工业DDTs禁用后,逐渐成为工业DDTs的替 代品。有研究得出,三氯杀螨醇中o,p'-DDT/p,p'- DDT的范围为1.3~9.3,平均值达到7.0,而工业DDTs 中,*o*,*p*'-DDT/*p*,*p*'-DDT的范围仅为0.2~0.3^[27]。因 此,*o*,*p*'-DDT/*p*,*p*'-DDT大小可以指示DDTs的主要 来源^[28-30]。

本研究中,o,p'-DDT/p,p'-DDT平均值为0.49± 0.42,约66.7%的土壤样品高于0.3,而约92.5%的样 品低于1.3[图4(d)~图4(f)],说明研究区土壤中DDTs 的主要来源是工业DDTs。DDT(o,p'-DDT与p,p'-DDT之和)在土壤中的降解方式可分为好氧分解和厌 氧分解,在好氧和厌氧条件下,微生物可将DDT分别 降解为 DDE(o,p'-DDE 与p,p'-DDE 之和)和 DDD (*o*,*p*'-DDD与*p*,*p*'-DDD之和)。由图4(a)~图4(c) 可知,研究区土壤样品中DDE含量普遍高于DDD, 说明该区域降解环境以好氧为主,这可能与研究区 周边耕作活动和房屋建设等人为扰动因素有关。 若没有新 DDTs 的输入,历史残留的 DDT 在土壤中 长期由微生物降解成 DDE 和 DDD。因此,可通过 (DDE+DDD)/DDT 判断 DDT 的降解程度,并判断 DDTs 是来源于历史残留还是新污染物的输入。当 (DDE+DDD)/DDT大于1时,表明DDT降解较为完 全,DDTs主要来源于历史残留,反之则说明新污染 物的输入是主要来源同。研究区表层土壤中 (DDE+DDD)/DDT平均值为1.13,表明DDTs主要来 源于历史残留。综上所述,研究区表层土壤中 DDTs的来源主要是工业 DDTs的历史残留。

2.2.2 HCHs组成特征和来源解析

本研究中, HCHs的4种异构体 α -、 β -、 γ -和 δ -HCH的检出率均为100%。图5(a)~图5(c)为研究区 表层土壤中HCH各异构体占HCHs的比重, β -HCH 所占比重明显高于其他异构体,平均可达43.2%,这

主要是因为历史使用的工业HCHs中各HCH异构体 含量和理化性质存在显著差异。工业HCHs主要包 括60%~70%α-HCH、5%~12%β-HCH、10%~12%γ-HCH、6%~10%δ-HCH和其他异构体^[32],β-HCH相较 于其他异构体,具有高熔沸点、低饱和蒸气压和高生 物富集性等特性,所以在土壤中不易被微生物降解。 如果没有新工业HCHs的输入,其他HCH异构体会在 土壤中长期转化为性质最稳定的β-HCH。

土壤中HCHs的主要来源除了工业HCHs,还有 林丹。林丹是质量分数超过99%的γ-HCH,由各 HCHs异构体经过提取纯化获得^[32]。由于γ-HCH具 有显著的杀虫功效,在工业HCHs禁用后,林丹作为 替代品广泛用于农业生产中。大量研究指出,α-HCH/γ-HCH可用于指示土壤中HCHs的主要来源是 工业HCHs还是林丹^[8,12,17,22]。工业HCHs中α-HCH/ γ-HCH约为4~7,由于γ-HCH的降解快于α-HCH, 且γ-HCH在一定条件下会转化为α-HCH,所以随着 时间推移,土壤残留的HCHs中α-HCH/γ-HCH不断 升高。当有林丹持续输入时,该比值会不断降低,一 般认为该比值低于3时,表明研究区存在林丹的输 入。由图5(d)~图5(f)可知,研究区表层土壤样品中 α-HCH/γ-HCH均低于3,比值范围在0.23~2.28,均值 为1.14,说明该区域内HCHs主要来源为林丹。为了 解研究区HCHs是来源于历史残留还是近期输入,本

Figure 5 Composition characteristics of HCHs in surface soil from Huixian wetland

研究使用β-HCH/(α-HCH+γ-HCH)进行判断,该比 值大于0.5时,表示HCHs主要为历史残留,否则认为 土壤中HCHs主要来源于近期新污染物的输入。本 研究中,所有土壤样品中β-HCH/(α-HCH+γ-HCH) 范围为0.63~3.04,平均值为1.27,表明本研究区内近 期没有新HCHs的输入,这也进一步解释了为什么本 研究区内土壤中HCHs含量处于较低水平。综上分 析可知,研究区内表层土壤中HCHs主要来源于林丹 的历史使用。

2.2.3 CHLs组成特征和来源解析

本研究所有样品中均能检出反式氯丹、顺式氯丹 和七氯,环氧七氯在荒草地和农用地土壤中能全部检 出,而在居民区土壤中检出率为88.9%。4种组分平 均浓度的大小顺序为:环氧七氯(1.60 ng·g⁻¹)>七氯 (0.30 ng·g⁻¹)>顺式氯丹(0.18 ng·g⁻¹)>反式氯丹 (0.15 ng·g⁻¹)。土壤中反式氯丹和顺式氯丹主要来源 于工业氯丹,主要成分包括反式氯丹(13%)、顺式氯 丹(11%)、七氯(5%)和反式九氯(5%)¹³¹。反式氯丹 在环境中比顺式氯丹更易降解,通常以反式氯丹与顺 式氯丹的含量比值指示土壤中氯丹的风化降解程度, 该比值高于1.18时,表示研究区近期存在工业氯丹的 输入,反之则表明土壤中工业氯丹降解比较完全。由 图6(a)可知,本研究中该比值范围为0.36~1.75,平均 值为0.99,约77.8%的样品中该比值低于1.18,表明

www.aer.org.cn

该区域表层土壤中工业氯丹的降解较为完全。环氧 七氯是七氯在土壤中的氧化产物,该研究中环氧七氯 含量(平均值0.76 ng·g⁻¹)高于七氯(0.28 ng·g⁻¹),说明 研究区土壤中七氯发生快速氧化,转化为环氧七氯。 环境中七氯除了来自工业氯丹还可来源于工业七氯, 工业七氯中包含72%七氯、20%反式氯丹和其他物 质。图6(b)中显示七氯类(七氯和环氧七氯之和)与 氯丹(顺式氯丹和反式氯丹之和)之间虽存在显著相 关性,但相关程度较低,表明工业七氯可能是研究区 内七氯类的主要来源。此外,有学者¹³⁴¹也发现广西乐 业大气沉降中七氯类含量较高,所以大气传输和沉降 可能也会影响到本研究区表层土壤中七氯的含量。 2.2.4 DRINs组成特征和来源解析

研究区表层土壤中异狄氏剂、狄氏剂、艾氏剂、异 狄氏剂醛和异狄氏剂酮的检出率分别为100%、 96.3%、92.1%、96.2%和100%,平均含量分别为0.49、 0.38、0.17、0.13 ng·g⁻¹和0.07 ng·g⁻¹。艾氏剂和狄氏

Figure 6 The ratio of trans-/cis-chlordane at all sampling sites and linear relationship between heptachlor(sum of heptachlor and heptachlor epoxide) and chlordane(sum of cis- and trans-chlordane)

农业环境科学学报 第40卷第2期

剂在玉米和柑桔的农业生产中被广泛用作杀虫剂,也 常用作白蚁杀虫剂防止树木等木制结构被侵蚀。艾 氏剂在土壤中能缓慢转化为狄氏剂,狄氏剂对环境中 的化学降解和代谢分解更具抵抗力。异狄氏剂是狄 氏剂的一种立体异构体,主要用于控制棉花植株害 虫。需要特别注意的是,这些物质相较于其他有机氯 农药具有更高的毒性[35]。异狄氏剂可通过光降解和 微生物分解为异狄氏剂醛和异狄氏剂酮。据统计,艾 氏剂、狄氏剂和异狄氏剂在中国只进行讨合成实验, 并没有进行过工业生产,且相关数据表明这些化合物 没有进出口记录[36],所以本研究区表层土壤中检出的 不同含量的DRINs可能是来源于大气长距离传输和 沉降。孔祥胜等^[34]对广西乐业大石围天坑群的大气 中OCPs的干湿沉降研究发现,艾氏剂、狄氏剂和异狄 氏剂的沉积通量和检出率处于较高水平。因此,今后 的研究需要关注这些未在中国工业生产和使用过的 OCPs的环境地球化学行为。

2.2.5 SULPHs组成特征和来源解析

硫丹是一种仍在大量生产和使用的有机氯农药, 主要用于棉花、茶树、烟草和苹果树等种植业中害虫 的防治。1994至2004年,硫丹在中国的总用量约为 25700 $t^{[37]}$ 。工业硫丹主要成分为 α -硫丹和 β -硫丹, 两者含量比值约为7:3。 α -硫丹在土壤中比 β -硫丹 更易降解和挥发,所以常用 α -硫丹/(α -硫丹+ β -硫 丹)判断是否有新硫丹的输入^[35]。本研究中, α -硫丹、 β -硫丹和硫丹硫酸盐的检出率分别为100%、99.0% 和97.2%,含量均值分别为0.19、0.20 ng·g⁻¹和0.21 ng·g⁻¹。研究区各采样点土壤中 α -硫丹/(α -硫丹+ β -硫丹)平均值为0.58,低于工业硫丹中的比值(0.7), 表明该区域土壤中硫丹主要来源于工业硫丹的历史 使用。本研究得出的结论与会仙湿地水体中硫丹的 组成特征分析结果相一致^[12]。

2.2.6 其他组分组成特征和来源解析

MXC含量在本研究中占总OCPs比重仅次于 DDTs,且97.2%的土壤样品中能检出MXC,表明该研 究区土壤中MXC分布较普遍。由表1可知,MXC在 荒草地、农用地和居民区土壤中含量均值分别为 3.15、3.10 ng·g⁻¹和5.13 ng·g⁻¹。MXC杀虫效果显著, 且相对于DDTs较易降解,逐渐成为取代DDTs的常 用杀虫剂。本研究区高含量的MXC反映了当地农药 的使用习惯。广西大石围天坑大气中MXC的检出率 和沉积通量均处于较高水平^[34],说明大气中MXC的 干湿沉降也可能是本研究区MXC含量高的原因。 HCB曾作为有机氯抗真菌剂广泛用于农业生产 中,2004年我国全面停止HCB的生产,并禁止用作农 药,但是在工业上HCB可被用作一种溶剂以及在合 成橡胶、聚氯乙烯(PVC)塑料、烟火、军火、木材防腐 剂和染料中被用作制造中间体或者添加剂^[38]。HCB 在环境中难分解,且蒸气压大、易挥发。因此,土壤中 HCB的来源可分为:区域内农药的历史残留、工业生 产排放的废物以及大气污染物的远距离传输和沉降 等。本研究中,HCB的检出率达到96.2%,在不同类 型土壤中含量依次为:荒草地(1.43 ng·g⁻¹) > 农用地 (0.53 ng·g⁻¹) > 居民区(0.35 ng·g⁻¹) 。荒草地中HCB 含量高可能是人为扰动少,导致HCB在土壤中的长 期残留。

2.3 土壤 OCPs 的生态风险评价

近年来,会仙湿地内生物多样性变化显著。2006—2009年调研结果显示湿地内鸟类10目29科150种, 鱼类6目16科39种,而2017—2018年再次调查发现 国家保护鸟类的遇见率极低^[11]。土壤中OCPs残留是 引起生态环境破坏的潜在来源之一^[39],因此,对会仙 湿地内土壤中OCPs进行生态风险评价,有助于评估 该区域土壤中OCPs对生物多样性变化的影响程度, 同时为会仙喀斯特湿地公园生态环境建设提供理论 参考。

目前,关于土壤中OCPs的生态风险评价模式没 有明确的基准,本研究中OCPs的生态风险评价参考 了 Jongbloed 等^[40]和 Urzelai 等^[41]的研究成果。Jongbloed 等^[40]收集鸟类和哺乳动物等的生物积累数据, 通过土壤-昆虫-鸟类/哺乳动物的食物链模型计算, 发现土壤中DDTs浓度超过10、11 ng·g⁻¹和190 ng·g⁻¹ 时,分别对直接暴露在土壤中的生物、鸟类和哺乳动 物产生健康风险。本研究中DDTs的平均含量为 5.61 ng·g⁻¹,表明该区域整体生态风险较低。由图 2 可知,点位 S12和S16中DDTs含量(31.3 ng·g⁻¹和 22.1 ng·g⁻¹)高于土壤生物和鸟类的最高允许浓度,说 明个别区域仍然存在潜在的生态风险。

Urzelai等^[41]以含有28%黏土和4%有机质的标准 土壤为研究对象,以HCHs对土壤中无脊椎动物的毒 性影响为基准计算得出, α -、 β -和 γ -HCH(林丹)能引 起土壤中50%物种风险的含量分别为100、40 ng·g⁻¹ 和10 000 ng·g⁻¹, γ -HCH(林丹)能引起10%物种风险 的含量为80 ng·g⁻¹。由图2可知,本研究区所有土壤 样品中HCHs平均含量为0.77 ng·g⁻¹。因此,会仙湿 地土壤中HCHs的生态风险水平较低。

3 结论

(1)会仙湿地表层土壤中24种OCPs检出率均高 于80%,0~10 cm深度土壤为OCPs分布的主要区域, 农用地土壤中OCPs含量高于荒草地和居民区。从 OCPs组成结果可知,DDTs和MXC是会仙湿地表层 土壤中主要污染物。

(2)研究区表层土壤中OCPs来源分析结果表明, 传统OCPs的历史残留是主要来源。同时,大气传输 和干湿沉降等迁移过程对研究区OCPs含量的影响不 容忽视。

(3)研究区表层土壤中OCPs含量处于较低水平, 且DDTs和HCHs含量远低于《土壤环境质量 农用地 土壤污染风险管控标准(试行)》(GB 15618—2018)和 《土壤环境质量 建设用地土壤污染风险管控标准(试 行)》(GB 36600—2018)中规定的风险筛选值。生态 风险分析结果表明会仙湿地表层土壤中DDTs和 HCHs的生态风险均较低。

参考文献:

- Jones K C, de Voogt P. Persistent organic pollutants (POPs) : State of the science[J]. *Environmental Pollution*, 1999, 100(1/2/3):209-221.
- [2] Zhu Y F, Liu H, Xi Z Q, et al. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China[J]. *Chemosphere*, 2005, 60(6):770–778.
- [3] Mrema E J, Rubino F M, Brambilla G, et al. Persistent organochlorinated pesticides and mechanisms of their toxicity[J]. *Toxicology*, 2013, 307:74–88.
- [4]张泽洲,邢新丽,顾延生,等. 舟山青浜岛水体及海产品中有机氯农药的分布和富集特征[J]. 环境科学, 2015, 36(1):266-273. ZHANG Ze-zhou, XING Xin-li, GU Yan-sheng, et al. Distribution and enrichment characteristics of organochlorine pesticides in water and halobios from Qingbang Island in Zhoushan, China[J]. *Environmental Science*, 2015, 36(1):266-273.
- [5] Tao S, Liu W X, Li Y, et al. Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain, China[J]. Environmental Science & Technology, 2008, 42(22):8395–8400.
- [6] 张俊鹏, 祁士华, 胡英, 等. 岩溶地下河水体中有机氯农药研究[J]. 科技通报, 2012, 28(4):223-225. ZHANG Jun-peng, QI Shi-hua, HU Ying, et al. Organochlorine pesticides in the water of a Karst underground river[J]. Bulletin of Science and Technology, 2012, 28(4):223-225.
- [7] Meijer S N, Shoeib M, Jantunen L M M, et al. Air-soil exchange of organochlorine pesticides in agricultural soils. 1. Field measurements using a novel *in situ* sampling device[J]. *Environmental Science & Technology*, 2003, 37(7):1292–1299.
- [8] 黄焕芳, 祁士华, 瞿程凯, 等. 福建鹫峰山脉土壤有机氯农药分布特

193 <u>380</u>

农业环境科学学报 第40卷第2期

- 征及健康风险评价[J].环境科学, 2014, 35(7):2691-2697. HUANG Huan-fang, QI Shi-hua, QU Cheng-kai, et al. Distribution characteristics and risk assessment of organochlorine pesticides in soil from Jiufeng Mountain Range in Fujian, China[J]. *Environmental Science*, 2014, 35(7):2691-2697.
- [9] Zhou R B, Zhu L Z, Yang K, et al. Distribution of organochlorine pesticides in surface water and sediments from Qiantang River, East China [J]. Journal of Hazardous Materials, 2006, 137(1):68–75.
- [10] 吴应科, 莫源富, 邹胜章. 桂林会仙岩溶湿地的生态问题及其保护 对策[J]. 中国岩溶, 2006, 25(1):85-88. WU Ying-ke, MO Yuanfu, ZOU Sheng-zhang. Ecologic problem and protection method of Karst wetland in Huixian, Guilin[J]. *Carsologica Sinica*, 2006, 25(1): 85-88.
- [11] 邹胜章, 周长松, 朱丹尼, 等. 科学保护"桂林之肾": 会仙岩溶湿地 [J]. 中国矿业, 2019, 28(增刊1): 353-357. ZOU Sheng-zhang, ZHOU Chang-song, ZHU Dan-ni, et al. Scientific protection of Huixian Karst wetland in Guilin[J]. China Mining Magazine, 2019, 28(Suppl 1): 353-357.
- [12] 符鑫,梁延鹏,覃礼堂,等. 桂林会仙岩溶湿地水体中有机氯农药 分布特征及混合物环境风险评估[J]. 农业环境科学学报, 2018, 37
 (5):974-983. FU Xin, LIANG Yan-peng, QIN Li-tang, et al. Distribution of organochlorine pesticides (OCPs) in the water body of Huixian Karst wetland of Guilin and environmental risk assessment of OCP mixtures[J]. Journal of Agro-Environment Science, 2018, 37(5): 974-983.
- [13] 徐莉, 黄亮亮, 吴志强, 等. 广西会仙湿地土壤重金属分布特征及风险评估[J]. 安徽农业科学, 2016, 44(29): 35-38, 101. XU Li, HUANG Liang-liang, WU Zhi-qiang, et al. Distribution characteristics and risk assessment of heavy metals in Huixian wetland of Guangxi Province[J]. Journal of Anhui Agricultural Sciences, 2016, 44 (29): 35-38, 101.
- [14] 黄焕芳. 青藏高原有机氯农药的大气长距离迁移转化研究[D]. 武 汉:中国地质大学, 2018. HUANG Huan-fang. Long-range atmospheric transport and transformations of organochlorine pesticides (OCPs) in the Qinghai-Tibet Plateau[D].Wuhan: China University of Geosciences, 2018.
- [15] 马文洁,何江涛,金爱芳,等.北京市郊再生水灌区土壤有机氯农 药垂向分布特征[J].生态环境学报,2010,19(7):1675-1681. MA Wen-jie, HE Jiang-tao, JIN Ai-fang, et al. Verticle distribution of organochlorine pesticides in reclaimed water irrigation area in Beijing suburbs[J]. Ecology and Environmental Sciences, 2010, 19(7):1675-1681.
- [16] 李阳兵, 王世杰, 李瑞玲. 岩溶生态系统的土壤[J]. 生态环境, 2004, 13 (3): 434-438. LI Yang-bing, WANG Shi-jie, LI Ruiling. Some soil features of Karst ecosystem[J]. *Ecology and Environment*, 2004, 13(3): 434-438.
- [17] 窦磊,杨国义.珠江三角洲地区土壤有机氯农药分布特征及风险 评价[J]. 环境科学, 2015, 36(8):2954-2963. DOU Lei, YANG Guo-yi. Distribution characteristics and risk assessment of organochlorine pesticides in surface soil of Pearl River Delta Economic Zone [J]. Environmental Science, 2015, 36(8):2954-2963.

- [18] 安琼, 董元华, 王辉, 等. 南京地区土壤中有机氯农药残留及其分布特征[J]. 环境科学学报, 2005, 25(4):470-474. AN Qiong, DONG Yuan-hua, WANG Hui, et al. Residues and distribution character of organochlorine pesticides in soils in Nanjing area[J]. Acta Scientiae Circumstantiae, 2005, 25(4):470-474.
- [19] Qu C K, Albanese S, Lima A, et al. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes[J]. Environment International, 2019, 124:89–97.
- [20] Kafaei R, Arfaeinia H, Savari A, et al. Organochlorine pesticides contamination in agricultural soils of southern Iran[J]. *Chemosphere*, 2020, 240:124983.
- [21] Syed J H, Malik R N, Liu D, et al. Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab, Pakistan[J]. Science of the Total Environment, 2013, 444:491-497.
- [22] 谢婷,张淑娟,杨瑞强.青藏高原湖泊流域土壤与牧草中多环芳烃和有机氯农药的污染特征与来源解析[J].环境科学,2014,35(7):2680-2690. XIE Ting, ZHANG Shu-juan, YANG Rui-qiang. Contamination levels and source analysis of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils and grasses from lake catchments in the Tibetan Plateau[J]. Environmental Science, 2014, 35 (7):2680-2690.
- [23] 孟佩俊, 李淑荣, 和彦苓, 等. 内蒙古农牧业区土壤中有机氯农药的分布特征及健康风险评估[J]. 农业环境科学学报, 2017, 36(3): 539-546. MENG Pei-jun, LI Shu-rong, HE Yan-ling, et al. Distribution characteristics and health risk assessment of organochlorine pesticides in surface soil from the major farming and animal husbandry districts in Inner Mongolia[J]. Journal of Agro-Environment Science, 2017, 36(3):539-546.
- [24] 谢正兰, 孙玉川, 张媚, 等. 岩溶地下河流域表层土壤有机氯农药 分布特征及来源分析[J]. 环境科学, 2016, 37(3):900-909. XIE Zheng-lan, SUN Yu-chuan, ZHANG Mei, et al. Distribution characteristics and source identification of organochlorine pesticides in surface soil in Karst underground river basin[J]. Environmental Science, 2016, 37(3):900-909.
- [25] Xing X L, Mao Y, Hu T P, et al. Spatial distribution, possible sources and health risks of PAHs and OCPs in surface soils from Dajiuhu Sub-alpine wetland, central China[J]. *Journal of Geochemical Exploration*, 2020, 208:106393.
- [26] 梁延鹏, 符鑫, 曾鸿鹄, 等.青狮潭库区沉积物/稻田土壤中有机氯 农药残留与释放规律[J]. 农业环境科学学报, 2019, 38(6):1330-1338. LIANG Yan-peng, FU Xin, ZENG Hong-hu, et al. The residue and release pattern of organochlorine pesticides in sediments and paddy soils in the Qingshitan reservoir region in Guilin, China[J]. *Journal of Agro-Environment Science*, 2019, 38(6):1330-1338.
- [27] Qiu X H, Zhu T, Yao B, et al. Contribution of dicofol to the current DDT pollution in China[J]. *Environmental Science & Technology*, 2005, 39(12):4385-4390.
- [28] Jiang Y F, Wang X T, Jia Y, et al. Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China[J]. Journal of Hazardous Materials, 2009, 170(2/3):989–

997.

2021年2月

- [29] Qu C K, Qi S H, Yang D, et al. Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: A case study from Ningde, southeast China[J]. *Journal of Geochemical Exploration*, 2015, 149:43–51.
- [30] Huang H F, Zhang Y, Chen W, et al. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China[J]. *Environmental Pollution*, 2018, 235:560-570.
- [31] Calamari D, Bacci E, Focardi S, et al. Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons[J]. Environmental Science & Technology, 1991, 25(8):1489-1495.
- [32] Willett K L, Ulrich E M, Hites R A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers[J]. *Environmental Science & Technology*, 1998, 32(15):2197–2207.
- [33] Bidleman T F, Jantunen L M M, Helm P A, et al. Chlordane enantiomers and temporal trends of chlordane isomers in arctic air[J]. Environmental Science & Technology, 2002, 36(4):539-544.
- [34] 孔祥胜, 祁士华, 黄保健, 等. 广西大石围天坑群有机氯农药的大 气干湿沉降[J]. 环境科学与技术, 2013, 36(3):42-49. KONG Xiang-sheng, QI Shi-hua, HUANG Bao-jian, et al. Atmospheric deposition of OCPs in Dashiwei Karst Tiankeng Group in Guangxi[J]. Environmental Science & Technology, 2013, 36(3):42-49.
- [35] Qu C K, Albanese S, Lima A, et al. Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy[J]. *Environmental Pollution*, 2017, 231: 1497– 1506.
- [36] 国家履行斯德哥尔摩公约工作协调组办公室. 中华人民共和国履

行《关于持久性有机污染物的斯德哥尔摩公约》国家实施计划[M]. 北京:中国环境科学出版社, 2008. Office of the National Coordination Group for Stockholm Convention Implementation. The People's Republic of China national implementation plan for the *Stockholm convention on persistent organic pollutants*[M].Beijing: China Environmental Press, 2008.

- [37] Jia H L, Li Y F, Wang D G, et al. Endosulfan in China 1-gridded usage inventories[J]. Environmental Science and Pollution Research, 2009, 16(3):295-301.
- [38] 环境保护部.国家污染物环境健康风险名录.化学第一分册[M]. 北京:中国环境科学出版社,2009. Ministry of Environmental Protection. Inventory of pollutants of state environmental health risk. The first volume of chemistry[M]. Beijing: China Environmental Science Press, 2009.
- [39] 邵学新, 吴明, 蒋科毅. 西溪湿地土壤有机氯农药残留特征及风险 分析[J]. 生态与农村环境学报, 2008, 24(1):55-58, 62. SHAO Xue-xin, WU Ming, JIANG Ke-yi. Distribution and risk assessment of organochlorine pesticides in the soils of Xixi wetland park[J]. Journal of Ecology and Rural Environment, 2008, 24(1):55-58, 62.
- [40] Jongbloed R H, Traas T P, Luttik R. A probabilistic model for deriving soil quality criteria based on secondary poisoning of top predators. 2. Calculations for dichlorodiphenyltrichloroethane (DDT) and cadmium[J]. Ecotoxicology and Environmental Safety, 1996, 34(3): 279-306.
- [41] Urzelai A, Vega M, Angulo E. Deriving ecological risk-based soil quality values in the Basque Country[J]. Science of the Total Environment, 2000, 247(2/3):279-284.