于修乐,马义兵,孙宗全,等.土壤中 Cr(Ⅵ)和 Cr(Ⅲ)生态毒性的差异性研究[J]. 农业环境科学学报, 2018, 37(11): 2522–2531. YU Xiu-yue, MA Yi-bing, SUN Zong-quan, et al. Study on ecotoxicity differences of Cr(Ⅵ) and Cr(Ⅲ) in soils[J]. *Journal of Agro-Environment Science*, 2018, 37(11): 2522–2531.

土壤中Cr(Ⅵ)和Cr(Ⅲ)生态毒性的差异性研究

于修乐1,马义兵1,2,孙宗全1,李合莲1,李士伟1,韩雪梅1*

(1.济南大学水利与环境学院,济南 250022; 2.中国农业科学院农业资源与农业区划研究所,北京 100081)

摘 要:土壤铬(Cr)的毒性与其价态密切相关,为了比较不同价态Cr对多种生物指标和生态系统的毒性差异,并为Cr污染土壤的 生态风险评价提供依据。本文通过文献搜集的基于中国土壤的Cr(Ⅵ)和Cr(Ⅲ)生态毒理学数据,分别建立了Cr(Ⅵ)和Cr(Ⅲ)对 各生物指标的半数有效浓度(EC₃₀)和10%有效浓度(EC₁₀)与土壤性质关系的预测模型,在模型种间外推和归一化处理后,利用 Burr Ⅲ构建了中性土壤情景下Cr(Ⅵ)和Cr(Ⅲ)的物种敏感性分布(SSD)曲线,并根据潜在影响比例(PAF)的公式反推出在不同 PAF下Cr(Ⅵ)与Cr(Ⅲ)在生态系统水平上的毒性差异。结果表明:小白菜根伸长和土壤脱氢酶活性分别是对土壤Cr(Ⅵ)和Cr (Ⅲ)污染最敏感的生物指标;在物种水平上,两种价态Cr的毒性差异因生物指标的变化而不同;在生态系统水平上,两种价态Cr 的毒性差异随 PAF 而发生变化,在较大的 PAF 范围内(基于 EC₃₀和 EC₁₀数据的 PAF 分别在 84.4%和 87.3% 以下)和通常的保护水 平(PAF 为5%)下,Cr(Ⅵ)的生态毒性显著高于Cr(Ⅲ)。本研究表明 Cr(Ⅵ)和Cr(Ⅲ)的生态毒性存在着显著差异,根据 Cr 的价态 组成从生态系统毒性水平上进行研究,能够综合反映土壤 Cr 污染的生态风险并为土壤修复管理等提供参考。

关键词:土壤Cr;价态;归一化;物种敏感性分布;生态毒性

中图分类号:X 文献标志码:A 文章编号:1672-2043(2018)11-2522-10 doi:10.11654/jaes.2018-0946

Study on ecotoxicity differences of Cr(VI) and Cr(III) in soils

YU Xiu-yue¹, MA Yi-bing^{1,2}, SUN Zong-quan¹, LI He-lian¹, LI Shi-wei¹, HAN Xue-mei^{1*}

(1.School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; 2.Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract: The toxicity of soil chromium (Cr) is related to its valence states. The present study aims to compare the toxicity differences of various valence states of soil Cr to diverse biological indicators and ecological system, and provide a basis for ecological risk assessment of the Cr-contaminated soils. Based on the collected ecotoxicological data of $Cr(\Psi)$ and $Cr(\Psi)$ in Chinese soils, the prediction models reflecting the quantitative relationship between median effective concentration (EC₅₀) or 10% effective concentration (EC₁₀) of $Cr(\Psi)$ or $Cr(\Psi)$ and soil properties were developed, respectively. After interspecific extrapolation and normalization were processed using the prediction models, the species sensitivity distribution (SSD) curves of $Cr(\Psi)$ and $Cr(\Psi)$ for various biological indicators in neutral soil scenarios were fitted with Burr \mathbb{H} . According to the formula of potential affected fraction (PAF), the differences between the toxicities of $Cr(\Psi)$ and $Cr(\Psi)$ to soil ecosystem were further evaluated in the condition of various PAFs. The results showed that root elongation of *pakchoi* and soil dehydrogenase activity were the most sensitive indicators for soil $Cr(\Psi)$ and $Cr(\Psi)$ contamination, respectively. The toxicity difference of the two valence states of Cr varied with distinct biological indicators at the species level and changed depending on PAF

收稿日期:2018-07-22 录用日期:2018-10-26

作者简介:于修乐(1993—),女,山东威海人,硕士研究生,主要从事土壤重金属安全阈值方面的研究。E-mail:627329269@qq.com

^{*}**通信作者**:韩雪梅 E-mail:stu hanxm@ujn.edu.cn

基金项目:国家重点研发计划项目(2016YFD0800407)

Project supported : The National Key R&D Program of China (2016YFD0800407)

at the ecosystem level. Cr(M) has the higher toxicity to soil ecosystem than $Cr(\mathbb{II})$ in a large range of PAF(i.e. PAFs derived from EC_{50} and EC_{10} data were less than 84.4% and 87.3%, respectively) and under the common protection level(i.e.PAF was equal to 5%). These findings indicated that the ecotoxicities of soil Cr(M) and $Cr(\mathbb{II})$ were obviously different, and the ecological risk of soil Cr contamination could be comprehensively reflected based on the valence states of Cr and their toxicities to ecosystem, which would help the restoration management of the soils contaminated with Cr.

Keywords: soil Cr; valence; normalization; species sensitivity distribution; ecotoxicity

铬(Cr)在自然环境中主要以Cr(Ⅵ)和Cr(Ⅲ)两 种价态存在[1-3],其毒性与环境中的存在价态具有密 切关系。由于Cr(VI)迁移能力较强且具有强氧化 性^[4],因此人们普遍认为Cr(VI)具有更高的生态毒 性^[5]。许多研究结果也得出了一致的结论,如Sivakumar 等⁶⁶分别研究了 Cr(Ⅵ) 和 Cr(Ⅲ) 在 10 种土壤中 对赤子爱胜蚓(Eisenia fetida)的毒性,发现暴露14d 时Cr(VI)的半数致死浓度(Median lethal concentration, LC₅₀)为222~257 mg·kg⁻¹, Cr(Ⅲ)的LC₅₀为1656~ 1902 mg·kg⁻¹,Cr(Ⅵ)对赤子爱胜蚓的毒性显著高于 Cr(Ⅲ)。梁艳茹四研究了Cr(Ⅵ)和Cr(Ⅲ)对塿土、褐 土和风沙土脱氢酶活性的影响,发现Cr(W)和 Cr(Ⅲ)对土壤脱氢酶活性的半数有效剂量(Median effective dose, ED50)分别为50.9~81.0 mg·kg⁻¹和2451~ 3415 mg·kg⁻¹,表明在这三种土壤中Cr(VI)对脱氢酶 的毒性也显著高于Cr(Ⅲ)。然而有些学者的研究却 得出了相反的结果,如Vignati等^[8]发现在淡水环境中 Cr(Ⅲ)对两种绿藻 Pseudokirchneriella subcapitata 和 Chlorella kessleri的毒性分别大约是Cr(VI)毒性的10 倍和5倍。Samborska等¹⁹也发现在相同浓度下 Cr(Ⅲ)比Cr(Ⅵ)对土壤脲酶具有更强的抑制作用。 由此可以看出,Cr的毒性除了与其价态有关之外,还 受到生物受体的影响,仅就单一生物受体作为研究 目标无法对不同价态 Cr的综合毒性进行准确评价。 需将当前分散的基于有限物种的Cr(Ⅵ)和Cr(Ⅲ) 毒性研究结果整合起来,才能从多生物指标和生态 系统水平上对Cr(Ⅵ)和Cr(Ⅲ)的生态毒性差异进 行综合比较。

Cr(Ⅵ)和Cr(Ⅲ)的毒性除了因生物受体而异外, 环境因子如土壤pH、有机碳含量(OC)、阳离子交换 量(CEC)及黏土含量(clay)等也是影响Cr在环境中 迁移转化和生物有效性的重要因素,相同含量的同一 价态Cr添加到不同类型土壤中对同一种生物和评价 终点的毒性常常差异较大,如Cr(Ⅵ)在酸性土壤中 对脲酶活性的半数有效浓度(Median effective concentration, EC_{so})为1093 mg·kg⁻¹,在碱性土壤中的EC_{so}却 为 27 473 mg·kg^{-1[10]}; Cr(Ⅲ)在酸性土壤中对磷酸酶 活性的 10% 有效浓度(10% of effective concentration, EC₁₀)为 1089 mg·kg⁻¹, 而在碱性土壤中的 EC₁₀却仅为 370 mg·kg^{-1[11]}, 因此在对不同价态 Cr 的生态毒性差异 进行分析时, 还需建立各价态 Cr 的生态毒性与土壤 性质关系的预测模型, 以便于通过归一化处理修正由 于土壤性质引起的毒性差异。

在重金属污染物对生态系统毒性的研究中,物种 敏感性分布(SSD)法以其简单明确、置信度较高、适 用于各个领域以及可预测生态系统的潜在生态效应 等优点[12-14],已成为普遍应用的重要方法,该方法假 设生态系统中不同物种对于某一污染物的敏感性 (EC50或EC10)能够被一个分布所描述,通过生物测试 获得的有限物种的毒性阈值是来自于该分布的样本, 可用来估算该分布的参数^[14]。杜建国等^[15]应用SSD 方法研究了不同价态Cr对海洋生态系统(包括藻类、 鱼类、甲壳类、软体动物、蠕虫和其他无脊椎动物)的 毒性,发现Cr(Ⅵ)的生态毒性大于Cr(Ⅲ)的生态毒 性,且高浓度(1000 µg·L⁻¹)水平下的Cr(VI)和 Cr(Ⅲ)生态风险差异也比低浓度(<10 μg·L⁻¹)时有所 增大。王晓南等116以保定市农田潮土为研究对象,通 过SSD法分析了Cr(VI)对8种土壤植物(小麦、莴苣、 黄瓜、玉米、白菜、大豆、韭菜和番茄)和2种土壤动物 (褐云玛瑙螺和赤子爱胜蚓)的生态毒性,并推导出了 保护生态系统中95%生物不受危害的浓度(5% of hazardous concentration, HC5)为6.5 mg·kg⁻¹。而目前 关于Cr(Ⅵ)和Cr(Ⅲ)污染对我国土壤生态系统毒性 差异的研究尚未见报道。由于土壤生态系统是由土 壤植物、动物和微生物三大类群多种生物组成,物种 选取上宜涵盖每一类群和营养级177,且考虑到土壤环 境因子对Cr(Ⅵ)和Cr(Ⅲ)毒性的潜在影响,本研究 将利用文献检索到的基于我国土壤Cr(Ⅵ)和Cr(Ⅲ) 的生态毒理学数据,通过构建生态毒性预测模型修 正土壤理化性质引起的Cr毒性差异,构建Cr(VI)和 Cr(Ⅲ)在同一土壤条件下的SSD曲线,明确土壤中 Cr(Ⅵ)和Cr(Ⅲ)的生态毒性差异,为不同价态Cr污

染土壤的生态风险评价和修复管理等提供参考。

1 材料与方法

1.1 Cr 毒理学数据的筛选与处理

在中国知网(CNKI)、万方学位论文、Sciencedirect、Web of Science、Wiley Online Library 和 Springer 数据库中以"土壤"和"Cr"或"铬"为关键词,搜索所有 基于中国土壤的Cr生态毒理学数据并进行筛选。筛 洗的数据应满足以下条件:实验有合理的对照:暴露 途径均匀合理或随机分布:实验中条件控制始终一 致;有足够的重复和浓度梯度,便于统计分析;外源添 加污染物,无复合污染等障碍因素;没有其他明显不 合理的因素,如缺少土壤性质和评价终点等[13]。从满 足条件的文献中直接获取相关生物指标的 EC50 和 EC10或利用有明显剂量-效应关系的原始数据通过 Log-logistic 函数公式计算获得。由于目前尚没有适 官的关于土壤Cr(Ⅵ)和Cr(Ⅲ)的老化和淋洗模型, 无法对不同老化时间和淋洗处理的土壤进行校正,为 统一条件以避免不同老化时间和是否进行淋洗处理 引起的结果差异,本研究仅选用在污染物添加7d内 进行毒理学试验的非淋洗土壤。考虑到 EC50 和 EC10 在不同土壤条件下可能存在较大差异,选取的生物指 标应至少具有两种土壤性质的ECso和ECuo.但是由于 中国土壤Cr对动物生态毒害数据缺乏,因此,一种土 壤性质下(包括人工土壤)的动物指标依然采用:对于 具有多个评价终点的同一物种,选取最重要或最敏感 的评价终点作为该物种的生物毒性评价指标。

1.2 生态毒性预测模型的构建和种间外推

研究表明土壤pH、OC及CEC对土壤中重金属元 素的生物有效性和毒性有着显著的影响^[18-19],因此, 以筛选到的生物指标的EC₅₀和EC₁₀作为因变量,以土 壤pH、OC或CEC等作为自变量,通过SPSS软件进行 多元逐步回归分析建立不同价态Cr的生态毒性预测 模型,模型的通用形式为:

EC₅₀/EC₁₀/lgEC₅₀/lgEC₁₀=a×pH+b×OC或 lgOC+

(1)

式中,a、b、c表示相应的土壤参数对Cr的生态毒性的 影响程度,截距k则表征该生物指标对Cr毒害的固有 敏感性。

有的生物指标因缺乏足够数据无法构建Cr生态 毒性预测模型,可与已有的属于同一类型的指标共享 Cr模型,即假设Cr对共享模型的所有生物指标的毒 性受土壤理化性质的影响程度是相同的,即共享模型 的土壤性质参数是恒定的,差异来自于各指标本身的 固有敏感性(k)。以ECso或ECto实测值与预测值之间 的均方根误差(RMSE)最小为目标,通过规划求解获 得对应不同模型的各个指标的截距(k),此为种间外 推^[13]。通过预测模型计算实测土壤条件下的ECso和 ECto预测值,并与实测值进行比较,分析种间外推模 型的预测效果。

1.3 归一化处理及种内变异分析

利用毒性预测模型将各土壤生物指标的 ECso 和 EC1o 值归一化到相同土壤条件下,以修正土壤性质的 影响。如土壤生物指标的 EC1o 模型为

$$lgEC_{10} = a \times pH + b \times lgOC + k$$
(2)

则归一化后的EC10nor为:

 $EC_{10nor} = EC_{10} \times 10^{a \times (pH_{nor} - pH) + b \times lg(OC_{nor} \div OC)}$ (3)

式中,*a*、*b*表示相应的土壤参数对Cr的生态毒性的影响程度,截距*k*表征该生物指标对Cr毒害的固有敏感性,"nor"表示对应的参数为归一化后的参数。

对于具有多个ECso和EC10(在不同土壤条件下测得)的某一生物指标,如归一化后变异系数降低,则 表示进行归一化可在一定程度上修正土壤性质差异 的影响^[13]。

1.4 SSD 曲线的建立

对于具有预测模型的生物指标,将不同土壤条件 下测得的EC50和EC10值进行归一化,并以归一化后的 EC50和EC10的几何平均值表示;对于没有预测模型或 模型不适用的生物指标选用实测值的几何均值。由 于本研究用于构建SSD曲线的生物指标包括归一化 后的预测值和未归一化的实测值,而未归一化生物指 标的土壤pH基本接近7,因此,将具有预测模型的生 物指标归一化到 pH=7.0、OC=1.5% 及 CEC=15 cmol· kg⁻¹的中性土壤条件下,以消除土壤性质差异产生 的影响,便于比较和分析Cr(Ⅵ)和Cr(Ⅲ)对生态系 统的毒性差异。采用 Burr Ⅲ分布函数对 Cr(VI)和 Cr(Ⅲ)EC50和EC10的累积概率分布进行拟合并建立 SSD曲线及其95%的置信区间。SSD曲线上某一Cr 浓度所对应的累积概率表示该浓度水平Cr对生态系 统的潜在影响比例 (Potential affected fraction, PAF)^[20],也可根据Burr Ⅲ分布函数的反推公式计算 已知PAF下的Cr浓度。根据置信区间的宽窄来判断 SSD 曲线的拟合度,置信区间越窄表明拟合度越 盲^[21]。

Burr Ⅲ分布计算PAF的公式为:

农业环境科学学报 第37卷第11期

2018年11月

$$PAF(x) = \overline{\left[1 + \left(\frac{b}{x}\right)^{c}\right]^{k}}$$
(4)

反推公式为:

$$x = \frac{b}{\left[\left(\frac{1}{PAF(x)}\right)^{\frac{1}{k}} - 1\right]^{\frac{1}{c}}}$$
(5)

式中,b、c、k是函数的3个参数。

1

SSD 拟合采用澳大利亚联邦科学和工业研究组织(Commonwealth Scientific and Industrial Research Organization, CSIRO)提供的计算软件 BurrliOZ(版本

2.0)(http://www.cmis.csiro.au/envir/burrlioz/)进行。

2 结果与讨论

2.1 生态毒性预测模型的建立及种间外推

根据以上筛选条件,共获得11个Cr(Ⅵ)生物指标的毒理学数据(表1)和9个Cr(Ⅲ)生物指标的毒理 学数据(表2);这些数据均基于外源添加Cr污染土 壤,ECso和ECto值以外源添加的Cr浓度表示,不包括 实验土壤背景值部分。

通过多元线性回归构建的Cr(Ⅵ)和Cr(Ⅲ)的生态毒性预测模型及种间外推模型的固有敏感性如表 3和表4所示。Cr(Ⅵ)对土壤脱氢酶、脲酶和碱性磷

表1 基于中国土壤的Cr(VI)生态毒理学数据

Table 1 Ecotoxicological data of Cr()	VI)) based on Chinese soils
---------------------------------------	-----	--------------------------

生物指标 Biological indicator	рН	OC/%	$CEC/cmol \cdot kg^{-1}$	$\mathrm{EC}_{50}/\mathrm{mg} \cdot \mathrm{kg}^{-1}$	$EC_{10}/mg \cdot kg^{-1}$	参考文献 References
土壤脱氢酶活性	6.51~8.46	0.414~1.51	2.45~16.9	72.1(24.6~152)	13.2(3.80~30.4)	[7,10,22]
土壤脲酶活性	5.30~8.46	0.448~1.51	4.49~16.9	4125(111.02~17 060)	696(22.2~3411)	[7,10,22-23]
土壤碱性磷酸酶活性	5.65~8.63	0.414~1.51	2.45~16.9	2750(145~13 738)	463(29.1~2747)	[7,22-23]
土壤纤维素酶活性	5.30~8.06	0.557~1.16	4.49~14.5	3384(1678~6329)	376(186~703)	[10]
土壤芳基硫酸酯酶活性	5.30~8.06	0.557~1.51	4.49~14.5	101(22.4~347)	9.60(2.60~52.7)	[10]
土壤过氧化氢酶活性	6.13~7.00	0.43~1.54	13.2~19.2	10 638(2133~53 060)	608(204~1818)	[24-25]
小麦根生物量	7.01~7.65	0.795~1.57	10.1	469(449~489)	307(286~330)	[26]
小白菜根伸长	7.10~7.75	0.947~0.973	23.3~29.5	7.79(6.36~9.52)	0.722(0.401~1.30)	[27-28]
赤子爱胜蚓产茧量	7.00	3.40	9.90	69.5(68.9~70.1)	29.1(28.6~29.5)	[29-30]
褐云玛瑙螺重量	8.10	1.34	17.2	204	22.8	[16]
线蚓致死数	7	—	_	24.3	—	[31]

注:pH、OC和CEC以在受试土壤中的范围值表示,ECso和EC10以ECso的几何均值(ECsomin~Ecsomin~

表2 基于中国土壤的Cr(Ⅲ)生态毒理学数据

Table 2 Ecotoxicological data of Cr(III) based on Chinese soils

生物指标 Biological indicator	рН	OC/%	CEC/cmol·kg ⁻¹	$EC_{50}/mg \cdot kg^{-1}$	$\mathrm{EC}_{10}/\mathrm{mg}\cdot\mathrm{kg}^{-1}$	参考文献 References
土壤脱氢酶活性	4.90~8.80	0.497~2.77	7.27~31.1	684(38.9~3415)	84.4(4.32~683)	[7,11,32]
土壤脲酶活性	4.90~8.80	0.423~2.77	4.49~31.1	2876(87.7~17 738)	509(10.0~20 476)	[7,11,23,32]
土壤碱性磷酸酶活性	5.30~8.63	0.423~1.51	4.49~16.9	3958(2618~12 563)	548(291~1396)	[7,11,23]
土壤芳基硫酸酯酶活性	5.30~8.00	0.557~1.51	7.27~14.5	3667(980~12 005)	407(109~1334)	[11]
土壤过氧化氢酶活性	5.30~8.00	0.557~1.51	7.27~14.5	42 834(405~32 787)	476(45.0~3643)	[11]
小麦苗期生物量	7.01~7.65	0.795~1.57	—	569(513~649)	214(115~399)	[33]
白符跳繁殖量	6	—	—	604	86.0	[34]
赤子爱胜蚓产茧量	6	—	—	892	610	[34]
线蚓繁殖量	6	—	—	637	477	[34]

注:pH、OC和CEC以在受试土壤中的范围值表示,EC50和EC10以EC50的几何均值(EC50min~EC50max)和EC10的几何均值(EC10min~EC10max)形式表示。 Note:pH,OC and CEC are expressed as range values in the soil tested. EC50 and EC10 are expressed as EC50 geometric mean(EC50min~EC50max) and EC10 geometric mean(EC10min~EC10max). 酸酶毒性的主控因素分别是土壤OC,土壤OC和CEC,以及土壤pH。对于Cr(Ⅲ)来说,土壤pH是影响其对土壤脲酶和碱性磷酸酶毒性的主控因素,土壤OC和CEC是影响其对土壤脱氢酶毒性的主控因素。表3和表4中Cr(Ⅵ)和Cr(Ⅲ)生态毒性预测模型的部分相关系数(*R*²)较小及土壤性质参数的正负号不统一,这可能是由于构建预测模型的数据来自不同的文献,其土壤培养时间和测定方法之间存在差异。

利用选用的生态毒性预测模型及对应的固有敏 感性计算各外推指标的ECso和ECIo预测值,其实测值 与预测值的关系见图1a和图1b。除Cr(VI)对土壤过 氧化氢酶活性的ECso与ECIo值超出了2倍预测区间 外,其余的生物指标的实测值与预测值比值均全部 或基本处于2倍预测区间内,表明这些生物指标种间 外推模型的预测效果较好,可用于接下来的归一化 处理和SSD曲线构建。对于模型预测效果不理想的 Cr(VI)土壤过氧化氢酶活性的ECso与ECIo值以及没 有预测模型的土壤植物和动物指标的ECso和ECIo值, 采用实测值的几何均值进行SSD曲线的构建。

2.2 种内变异分析

利用表3和表4中的模型将各土壤生物指标的 ECso和ECu值归一化到中性土壤条件下,各生物指标 的种内变异结果见图2和图3。除Cr(Ⅵ)土壤纤维素 酶活性的ECso和ECto值及芳基硫酸酯酶活性的ECso 值,经毒性预测模型归一化后变异系数略有增加,其 余Cr(Ⅵ)和Cr(Ⅲ)生物指标的变异系数均显著降 低,表明通过归一化处理可以有效消除由于土壤性质 差异引起的毒性变异^[13]。

2.3 中性土壤情景中Cr(Ⅵ)和Cr(Ⅲ)的SSD曲线

通过 Burr Ⅲ函数分别拟合得到 Cr(Ⅵ)和 Cr(Ⅲ) 在中性土壤条件下的 SSD 曲线,见图4。Cr(Ⅵ)和 Cr(Ⅲ)各生物指标的 EC₅₀和 EC₁₀的几何均值基本都 在 95% 置信区间内,但存在曲线的部分区间拟合度 相对较差、置信区间较宽的情况,原因可能是:这些生 物指标的数据来自不同的文献,实验条件不统一;部 分生物指标存在非归一化等,这些都会对 SSD 曲线的 拟合度产生影响。

总体来说,在构建的 Cr(Ⅵ)和 Cr(Ⅲ)SSD 曲线 中,从生物大类即土壤植物、动物和微生物的敏感性 顺序上来说,没有表现出明显的规律。但在 Cr(Ⅵ) 对各生物指标的 ECso和 ECto值构建的 SSD 曲线中(见 图 4a,图 4c),小白菜根伸长指标均位于曲线的最底 端,表明小白菜根伸长可作为土壤 Cr(Ⅵ)对生态系 统毒性的敏感指标,用于土壤 Cr(Ⅵ)污染的生物监

表3 Cr(VI)EC50和EC10生态毒性预测模型及生物指标固有敏感性

Table 3 Ecotoxicity prediction models of EC₅₀ and EC₁₀ values of Cr(VI) and inherent sensitivity of extrapolated biological indicators

	生物指标 Biological indicator	预测模型 Predictive model	固有敏感性(k)Inherent sensitivity(k)	
EC_{50}	土壤脱氢酶活性	EC_{50} =-185 lgOC+77.8 (R^2 =0.695, n =12)	土壤纤维素酶活性3806	
	土壤脲酶活性	EC ₅₀ =30 969 lgOC-30 078 lgCEC+41 724(R^2 =0.601, n =15)		
	土壤碱性磷酸酶活性	$lgEC_{50}=0.633$ pH-1.61($R^2=0.365$, $n=17$)	土壤芳基硫酸酯酶活性 -2.52	土壤过氧化氢酶活性 -0.129
EC_{10}	土壤脱氢酶活性 土壤脲酶活性	lgEC ₁₀ =-0.958 lgOC+1.10 (<i>R</i> ² =0.454, <i>n</i> =12) EC ₁₀ =3428 lgOC-3134 lgCEC+4839 (<i>R</i> ² =0.406, <i>n</i> =15)	土壤纤维素	酶活性2.52
	土壤碱性磷酸酶活性	$lgEC_{10}=0.587 pH-2.02(R^2=0.357, n=17)$	土壤芳基硫酸酯酶活性 -3.21	土壤过氧化氢酶活性 -1.07

表4 Cr(Ⅲ)EC50和EC10生态毒性预测模型及生物指标固有敏感性

Table 4 Ecotoxicity prediction models of EC₅₀ and EC₁₀ values of Cr(III) and inherent sensitivity of extrapolated biological indicators

	生物指标 Biological indicator	预测模型 Predictive model	固有敏感性(k)Inherent sensitivity(k)	
EC ₅₀	土壤脱氢酶活性	$lgEC_{50} = -0.4810C + 3.42 \ (R^2 = 0.165, n = 28)$		
	土壤脲酶活性	lgEC ₅₀ =0.447pH+0.169 (<i>R</i> ² =0.392, <i>n</i> =34)	土壤过氧化氢酶活性 0.473	土壤芳基硫酸酯酶活性 0.406
	土壤碱性磷酸酶活性	$lgEC_{50}=-0.187pH+5.08 (R^2=0.723, n=16)$		
EC_{10}	土壤脱氢酶活性	$lgEC_{10}$ =-0.036CEC+2.48 (R^2 =0.162, n =28)	土壤芳基硫酮	後酯酶活性2.97
	土壤脲酶活性	$lgEC_{10}=0.531$ pH-1.19($R^2=0.546$, $n=34$)	土壤过氧化	氢酶活性-1.07
	土壤碱性磷酸酶活性	$EC_{10}=-245pH+2543$ ($R^{2}=0.504$, $n=16$)		

图 1 基于种间外推模型的 Cr(II) 和 Cr(III) 的实测 EC₅₀与预测 EC₅₀(a) 和实测 EC₁₀与预测 EC₁₀(b) 的相关性

Figure 1 Correlation between measured and predicted $EC_{50}(a)$ and $EC_{10}(b)$ of $Cr(\,V\!\!I\,)$ and $Cr(\,I\!\!I\,)$ based on

interspecies extrapolation models

图 2 归一化前后 Cr(\I) 对各生物指标的 EC₅₀和 EC₁₀的 种内变异

Figure 2 Intraspecific variation of EC_{50} and EC_{10} of Cr(VI) for various biological indicators before and after their normalization

测和预警。而在 Cr(Ⅲ)的 SSD 曲线中(图 4b, 图 4d), 土壤脱氢酶活性较其他指标更为敏感,可作为土壤 Cr(Ⅲ)污染的早期诊断指标之一。相对于土壤植物 和动物,土壤微生物酶活性受 Cr毒性的影响表现出 了更大的变异,在 SSD 曲线的上、中、下端均有分布, 这可能与不同酶类执行的功能不同以及 Cr与微生物 种群间存在着复杂的相互作用有关。过氧化氢酶可 促使 H₂O₂分解为分子氧和水^[35];脱氢酶在有机物氧化 中发挥着重要作用,可将氢由电子供体传递给受 [4^[36];纤维素酶、脲酶、芳基硫酸酯酶、碱性磷酸酶分 别在土壤碳、氮、硫、磷循环中发挥着重要作用^[37]。重

图 3 归一化前后 Cr(Ⅲ) 对各生物指标的 ECso和 EC1o的 种内变异

金属 Cr可以通过抑制微生物的生长繁殖或与酶分子的巯基、氨基和羧基结合从而抑制酶的合成和活性^[38];也能够通过选择性富集 Cr耐受菌或作为酶的辅基,从而促进酶的合成和活性^[39]。微生物还可以通过溶解、吸附、沉淀和氧化还原等作用影响 Cr的生物有效性,从而改变 Cr对微生物及其酶活性的毒性^[40-41]。

本研究对 SSD 曲线中共有生物指标的 Cr(\I)和 Cr(Ⅲ)毒性进行了比较分析,见表5。根据不同价态 Cr 对赤子爱胜蚓产茧量的 EC50和 EC10值,得出 Cr(\I) 对赤子爱胜蚓产茧量的毒性是 Cr(Ⅲ)的 12.8 倍和 21.0倍,原因可能是:在中性 pH条件下,Cr(\I)是水

图4 中性土壤情景下Cr(Ⅵ)和Cr(Ⅲ)的SSD曲线

Figure 4 SSD curves of $Cr(\,V\!\!I\,)$ and $Cr(\,I\!\!I\,)$ in the neutral soil scenario

表5 中性土壤情景下 $Cr(M)$ 和 $Cr(II)EC_{50}$ 与 EC_{10} 的预测值	Ī
Table 5 Predicted values of EC_{50} and EC_{10} of $Cr(\sqrt{1})$ and $Cr(\sqrt{1})$)
in neutral soil scenario	

生物指标	EC ₅₀ /m	ng∙kg⁻¹	$EC_{10}/mg \cdot kg^{-1}$	
Biological indicator	Cr(M)	Cr(]]])	Cr(M)	Cr(Ⅲ)
土壤脱氢酶活性	35.3	501	8.60	85.4
土壤脲酶活性	10 221	2004	1476	332
土壤碱性磷酸酶活性	659	5873	123	803
土壤过氧化氢酶活性	10 638	4002	608	439
土壤芳基硫酸酯酶活性	82.2	3426	7.98	271
赤子爱胜蚓产茧量	69.5	892	29.1	610

溶性的且较Cr(Ⅲ)离子更小,因此更容易穿透细胞膜 表现出毒害,而Cr(Ⅲ)较难穿过细胞膜以及少量的 Cr(Ⅲ)是动物必需的微量元素^[6]。研究发现Cr(Ⅵ) 对土壤脱氢酶活性、芳基硫酸酯酶活性和碱性磷酸 酶活性的毒性也高于Cr(Ⅲ)6.53~41.7倍,这可能与 Cr(Ⅵ)具有强氧化性、移动性强和不容易被土壤颗粒 吸附等有关^[42]。而对于土壤脲酶活性和过氧化氢酶 活性,其Cr(Ⅲ)的毒性是Cr(Ⅵ)毒性的1.38~5.10倍, 表明土壤脲酶活性和过氧化氢酶活性对Cr(Ⅲ)的毒 害更敏感。由于过氧化氢酶可清除Cr(VI)等氧化剂 在还原过程中形成的自由基^[43],脲酶可将尿素分解成 CO₃²⁻和氨,增加土壤pH和固化重金属,因此当存在 移动性较强的Cr(VI)时,可能会进一步刺激这两类 酶的活性,以抵御重金属对微生物的伤害^[44]。

此外,对于同一价态的Cr来说,在由ECso和EC10 数据构建的SSD曲线中,其共有指标的排列顺序也是 不同的,如在由Cr(Ⅵ)的ECso值构建的SSD曲线中 (图4a),土壤脱氢酶活性较芳基硫酸酯酶活性对 Cr(Ⅵ)的毒害更敏感,而在Cr(Ⅵ)的EC10值构建的 SSD曲线中(图4c),土壤芳基硫酸酯酶活性较脱氢酶 活性更为敏感。由于ECso和EC10值分别对应着对某 个生物指标的50%和90%保护水平,因此这说明物 种的敏感性顺序与对各物种的保护水平有关,这也 促使我们进一步分析不同保护水平下的Cr(Ⅵ)和 Cr(Ⅲ)对生态系统的毒性差异。

基于在中性土壤条件下 $Cr(\mathbf{M})$ 和 $Cr(\mathbf{II})$ 的 SSD 曲线和 PAF公式(图4),反推出了不同 PAF下 $Cr(\mathbf{M})$ 与 $Cr(\mathbf{II})$ 的 EC_{50} 和 EC_{10} 值(见表6)及其两种价态 Cr的 EC_{50} 比值(图 5a)和 EC_{10} 比值(图 5b),以反映 Cr(叭)与Cr(Ⅲ)的毒性差异随生态系统保护水平的 变化。当PAF较低(即较高的生态系统保护水平)时, 基于ECso和ECto值得到的Cr(叭)和Cr(Ⅲ)的浓度比 值均小于1,表明Cr(叭)较Cr(Ⅲ)具有更高的生态毒 性;随着PAF的增大,Cr(叭)和Cr(Ⅲ)的浓度比值逐 渐增大,当基于ECso和ECto值构建的SSD曲线的PAF 分别达到 84.4%和87.3%(对应的ECso和ECto值分别

图 5 中性土壤情景中不同 PAF下 Cr(Ⅵ)与 Cr(Ⅲ)的 EC₅₀比值(a)与 EC₁₀比值(b)

Figure 5 Ratios of Cr(M) and $Cr(II) EC_{50}s(a)$ and $EC_{10}s(b)$ under different PAFs in the neutral soil scenario

表6 中性土壤情景中不同 PAF	FCr(VI)和Cr(Ⅲ)的浓度
------------------	--------	--------	------

Table 6 Concentrations of Cr(VI) and Cr(III) under different PAFs in the neutral soil scenario

Ⅲ)
.8
52
-
12
31

注:黑字体表示在该PAF下Cr(Ⅵ)和Cr(Ⅲ)的EC∞值或EC₀值相等。

Note: The values in bold were the PAFs and concentrations of Cr under which the toxicity of Cr($\ensuremath{\mathbb{N}}$) was equal to that of Cr($\ensuremath{\mathbb{I}}$).

在今后对我国土壤Cr污染的生态毒性研究中, 应进一步完善不同土壤类型下不同价态Cr对多种生物指标的毒理学数据库,以建立每一生物指标与土壤 性质关系的毒性预测模型,构建不同土壤情景下不同 价态Cr的SSD曲线,并发展土壤外源添加Cr的淋洗 和老化模型,以进一步为不同土壤情景下不同价态 Cr的生态毒性差异比较和生态安全阈值的制定提供 科学依据。

3 结论

(1)根据 Cr(Ⅵ)和 Cr(Ⅲ)在中性土壤情景下的 SSD曲线,发现小白菜根伸长和土壤脱氢酶活性分别 是对土壤 Cr(Ⅵ)和 Cr(Ⅲ)污染最敏感的生物指标, 可作为土壤 Cr(Ⅵ)和 Cr(Ⅲ)污染的早期生物诊断和 预警的潜在指标之一。

(2)通过对Cr(Ⅵ)和Cr(Ⅲ)SSD曲线中共有生物 指标的比较,发现对于不同的物种来说,Cr(Ⅵ)和 Cr(Ⅲ)的毒性强弱有质的区别:对于赤子爱胜蚓产茧 量、土壤脱氢酶活性、芳基硫酸酯酶活性和碱性磷酸 酶活性而言,Cr(Ⅵ)具有更高的毒性;而对于土壤脲 酶活性和过氧化氢酶活性来说,Cr(Ⅲ)具有更高的毒 性。

(3)根据 PAF 的反推公式,发现在较大的 PAF 和 Cr浓度范围内,即基于 EC₅₀ 和 EC₁₀值构建的 SSD 曲 线的 PAF 分别在 84.4% 和 87.3% 以下或对应的 EC₅₀ 和 EC₁₀值分别低于 3076 mg·kg⁻¹和 642 mg·kg⁻¹时, Cr(叭)的生态毒性显著高于 Cr(Ⅲ);在通常的保护水 平(即 PAF 为 5%)下,Cr(叭)对生态系统的毒性也显 著高于 Cr(Ⅲ)。

农业环境科学学报 第37卷第11期

参考文献:

- Lee D Y, Shih Y N, Zheng H C, et al. Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium (VI) phytotoxicity[J]. *Plant & Soil*, 2006, 281(1/2):87–96.
- [2] Chen C P, Kaiwei J, Lin T H, et al. Assessing the phytotoxicity of chromium in Cr(\[V])-spiked soils by Cr speciation using XANES and resin extractable Cr(\[I]) and Cr(\[V])[J]. *Plant & Soil*, 2010, 334(1/2):299– 309.
- [3] Ding W, Stewart D I, Humphreys P N, et al. Role of an organic carbonrich soil and Fe (Ⅲ) reduction in reducing the toxicity and environmental mobility of chromium(Ⅵ) at a COPR disposal site[J]. Science of the Total Environment, 2015, 541:1191–1199.
- [4] Somasundaram V. Laboratory scale column studies on transport and biotransformation of Cr(VI) through porous media in presence of CRB, SRB and IRB[J]. *Chemical Engineering Journal*, 2011, 171(2):572– 581.
- [5] Shanker A K, Cervantes C, Lozatavera H, et al. Chromium toxicity in plants[J]. *Environment International*, 2005, 31(5):739-753.
- [6] Sivakumar S, Subbhuraam C V. Toxicity of chromium (III) and chromium (VI) to the earthworm *Eisenia fetida*[J]. *Ecotoxicology & Environmental Safety*, 2005, 62(1):93–98.
- [7]梁艳茹.不同价态铬对土壤生物化学活性影响的研究[D].杨凌:西北农林科技大学,2010.
 LIANG Yan-ru. The research on soil biochemical activity affected by

different valence of chromium[D]. Yangling: Northwest A&F University, 2010.

- [8] Vignati D A L, Dominik J, Beye M L, et al. Chromium(√I) is more toxic than chromium(Ⅲ) to freshwater algae: a paradigm to revise?[J]. Ecotoxicology & Environmental Safety, 2010, 73(5):743-749.
- [9] Samborska A, Stepniewska Z, Stepniewski W. Influence of different oxidation states of chromium(VI, Ⅲ) on soil urease activity[J]. Geoderma, 2004, 122(2);317–322.
- [10] 李 天,来航线,和文祥,等.Cr⁶⁺的土壤酶效应研究[J].西北农林科技大学学报(自然科学版),2012,40(8):171-178.
 LI Tian, LAI Hang-xian, HE Wen-xiang, et al. Effects of Cr⁶⁺ on soil enzyme activity[J]. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(8):171-178.
- [11] 胡 一, 孔 龙, 和文祥, 等. Cr³⁺的土壤酶效应研究[J]. 西北农林 科技大学学报(自然科学版), 2012, 40(5):166-172.
 HU Yi, KONG Long, HE Wen-xiang, et al. Effects of Cr³⁺ on soil enzyme activity[J]. Journal of Northwest A&F University(Natural Science Edition), 2012, 40(5):166-172.
- [12] 李 波. 外源重金属铜、镍的植物毒害及预测模型研究[D]. 北京:
 中国农业科学院, 2010.
 LI Bo. The phytotoxicity of added copper and nickel to soils and pre-

dictive models[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.

[13] 王小庆. 中国农业土壤中铜和镍的生态阈值研究[D]. 北京:中国 矿业大学, 2012.

WANG Xiao-qing. Ecological thresholds for copper and nickel in Chinese agricultural soils[D]. Beijing: China University of Mining & Technology, 2012.

- [14] Posthuma L, Traas T P, Suter G W. General introduction to species sensitivity distributions[J]. Proceedings of the Royal Society B–Biological Sciences, 2002, 141(905):510–523.
- [15] 杜建国,赵佳懿,林 彩,等.应用物种敏感性分布法评估不同形态Cr对海洋生物的生态风险[J].海洋环境科学,2013,32(4):570-575.

DU Jian-guo, ZHAO Jia-yi, LIN Cai, et al. Assessing ecological risks of different valence states of Cr to marine organisms by species sensitivity distributions[J]. *Marine Environmental Science*, 2013, 32 (4) : 570–575.

- [16] 王晓南, 刘征涛, 王婉华, 等. 重金属铬(N)的生态毒性及其土壤 环境基准[J]. 环境科学, 2014, 35(8):3155-3161.
 WANG Xiao-nan, LIU Zheng-tao, WANG Wan-hua, et al. Ecotoxicological effect and soil environmental criteria of the heavy metal chromium(N)[J]. Environmental Science, 2014, 35(8):3155-3161.
- [17] USEPA. Guidelines for ecological risk assessment EPA/630/R-95/ 002F[S]. Washington: Federal Register, 1998.
- [18] Smolders E, Oorts K, Van S P, et al. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards[J]. *Environmental Toxicology & Chemistry*, 2010, 28(8):1633-1642.
- [19] 李 波, 马义兵, 刘继芳, 等. 西红柿铜毒害的土壤主控因子和预测模型研究[J]. 土壤学报, 2010, 47(4):665-673.
 LI Bo, MA Yi-bing, LIU Ji-fang, et al. Major soil factors controlling copper toxicity to tomato in a wide range of Chinese soils and the predictable models[J]. *Acta Pedologica Sinica*, 2010, 47(4):665-673.
- [20] 孔祥臻,何 伟,秦 宁,等.重金属对淡水生物生态风险的物种 敏感性分布评估[J].中国环境科学,2011,31(9):1555-1562. KONG Xiang-zhen, HE Wei, QIN Ning, et al. Assessing acute ecological risks of heavy metals to freshwater organisms by species sensitivity distributions[J]. *China Environmental Science*, 2011, 31(9):1555-1562.
- [21] 刘永生,李瑞敏. 稻谷安全种植土壤重金属限值的基于置信区间 评价法[J]. 地质通报, 2006, 25(5):616-620. LIU Yong-sheng, LI Rui-min. Method of evaluating the threshold values of heavy metals in soils based on the confidence interval for safe rice growth[J]. Geological Bulletin of China, 2006, 25(5):616-620.
- [22] 蔡少华. 土壤 Cr(VI)与土壤生化活性关系研究[D]. 杨凌:西北农 林科技大学, 2008.

CAI Shao-hua. Study on the relations between soil hexavalent chromium and soil biochemically activity[D]. Yangling: Northwest A&F University, 2008.

[23] 王 娟. 铬和铜对土壤生物化学活性影响的研究[D]. 杨凌: 西北 农林科技大学, 2007.

WANG Juan. The research on soil biochemical activity affected by chromium and copper[D]. Yangling:Northwest A&F University, 2007.

[24] 汪 杏, 沈根祥, 胡双庆, 等. 铬(\])和菲单一及复合污染对土壤 微生物酶活性的影响[J]. 农业环境科学学报, 2016, 35(7):1300-1307.

WANG Xing, SHEN Gen-xiang, HU Shuang-qing, et al. Effects of single and joint pollution of chromium (VI) and phenanthrene on microbiological enzyme activities insoil[J]. Journal of Agro-Environment

Science, 2016, 35(7):1300-1307.

- [25] Peng B, Huang S H, Yang Z H, et al. Inhibitory effect of Cr (VI) on activities of soil enzymes[J]. Journal of Central South University, 2009, 16(4):594–598.
- [26] 邵 云, 刘会娟, 胡永娟, 等. 土壤质地对铬胁迫下小麦灌浆期形态与旗叶光合特性的影响[J]. 麦类作物学报, 2012, 32(6):1150-1155.

SHAO Yun, LIU Hui-juan, HU Yong-juan, et al. Effects of soil textures on morphology and photosynthetic characteristics of flag leaves of wheat during filling stage in chromium polluted soils[J]. *Journal of Triticeae Crops*, 2012, 32(6):1150–1155.

[27] 王 丹,魏 威, 王松山, 等. 铜、铬单一及复合污染对小白菜种子 萌发及根长的生态毒性[J]. 西北农林科技大学学报(自然科学 版), 2010, 38(12):63-68.

WANG Dan, WEI Wei, WANG Song-shan, et al. Single and combined toxicity of chromium and copper to seed germination and root elongation of Pakchoi(*Brasicachinensis*) in soils[J]. *Journal of Northwest A&F University*(*Natural Science Edition*), 2010, 38(12):63-68.

- [28] 王 毅. 土壤环境中铬对陆生高等植物毒性效应及土壤质量基准限值研究[D]. 天津:南开大学, 2013.
 WANG Yi. Toxic effects of chromium on terrestrial plants and relevant soil-guality criteria[D]. Tianjin; Nankai University, 2013.
- [29] 王婉华,陈丽红,方 征,等.土壤铬(Ⅵ)对赤子爱胜蚓的生态毒 性效应[J].环境科学研究, 2013, 26(6):653-657.
 WANG Wan-hua, CHEN Li-hong, FANG Zheng, et al. Ecotoxicity of chromium(Ⅵ) to Eisenia fetida in soil[J]. Research of Environmental Sciences, 2013, 26(6):653-657.
- [30] 陈丽红, 刘征涛, 李 政, 等. 老化土壤中铬(\I)对赤子爱胜蚓繁 殖及抗氧化酶活性的影响[J]. 环境化学, 2013, 32(12):2364-2369. CHEN Li-hong, LIU Zheng-tao, LI Zheng, et al. Effects of Cr(\I) on the reproduction and antioxidant enzyme activities of *Eisenia fetida* with aged soils[J]. *Environmental Chemistry*, 2013, 32(12): 2364-2369.
- [31] 崔春燕. 铬(W)和菲复合污染对土壤生物的毒性效应及危害性评价研究[D]. 上海:东华大学, 2016. CUI Chun-yan. Study on ecotoxicological effects of chromium(W) and phenanthrene combined pollution on soil biont and its hazard assessment methods[D]. Shanghai; Donghua University, 2016.
- [32] 张国庆. 土壤-小麦系统中汞和铬生态毒理效应的研究[D]. 杨凌: 西北农林科技大学, 2013. ZHANG Guo-qing. Eco-toxicological effects of mercury and chromium in soil-wheat sysyem[D]. Yangling: Northwest A&F University,
- 2013.
 [33] 刘会娟. Cr、As胁迫下土壤-小麦系统对不同土壤质地的响应及 生物有效性评价[D]. 新乡:河南师范大学, 2012.
 LIU Hui-juan. Response of soil-wheat system to different soil texures under chromium and arsenic stress and the evaluation of bioavailability[D]. Xinxiang: Henan Normal University, 2012.
- [34] Lock K, Janssen C R. Ecotoxicity of chromium (III) to Eisenia fetida, Enchytraeusalbidus, and Folsomia candida[J]. Ecotoxicology & Environmental Safety, 2002, 51(3):203-205.

[35] 曹汶龙. 枯草芽孢杆菌过氧化氢酶分子改造及发酵优化[D]. 无锡: 江南大学, 2014.

CAO Wen-long. Molecular modification and fermentation optimization of catalase from Bacillus subtilis[D]. Wuxi: Jiangnan University, 2014.

[36] 贾 蓉.不同碳源模式下水稻土中脱氢酶活性与微生物铁还原的 关系[D].杨凌:西北农林科技大学,2012.

JIA Rong. Relationship between dehydrogenase activity and microbial iron reduction with different carbon sources in paddy soil[D]. Yangling:Northwest A&F University, 2012.

[37] 孙亚男,李 茜,李以康,等. 氮、磷养分添加对高寒草甸土壤酶活性的影响[J]. 草业学报, 2016, 25(2):18-26. SUN Ya-nan, LI Qian, LI Yi-kang, et al. The effect of nitrogen and phosphorus applications on soil enzyme activities in Qinghai-Tibetan alpine meadows[J]. Acta Prataculturae Sinica, 2016, 25(2):18-26.

 [38] 陈海燕. 镉污染土壤的生物修复:热化学研究耐镉菌株抗性机制
 [D]. 武汉:中国地质大学, 2009.
 CHEN Hai-yan. Bioremediation of Cd-contaminated soil: Thermochemical study of the mechanism of Cd-resistent microbes[D]. Wu-

han:China University of Geosciences, 2009. [39] 肖文丹, 叶雪珠, 孙彩霞, 等. 铬耐性菌对土壤中六价铬的还原作 用[J]. 中国环境科学, 2017, 37(3):1120-1129. XIAO Wen-dan, YE Xue-zhu, SUN Cai-xia, et al. The effect of chro-

mium-resistant bacteria on reduction of hexavalent chromium in soils [J]. *China Environmental Science*, 2017, 37(3):1120–1129.

- [40] Camargo F A, Bento F M, Okeke B C, et al. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate[J]. *Journal of Environmental Quality*, 2003, 32 (4) : 1228– 1233.
- [41] 魏 斐,杨丽荣,薛保国,等.还原六价铬细菌及其还原酶的研究
 [J].中国生物工程杂志,2012,32(4):53-59.
 WEI Fei, YANG Li-rong, XUE Bao-guo, et al. Study on the restore hexavalent chromium bacteria and its reductase[J]. *China Biotechnology*, 2012, 32(4):53-59.
- [42] 贡晓飞,鄂尔丁夫,王 琪,等.不同价态铬在不同水分条件下的 生物有效性及其对水稻的毒性[J]. 生态毒理学报, 2015, 10(4): 170-176.

GONG Xiao-fei, ER Ding-fu, WANG Qi, et al. Bioavailability and toxicity of Cr(III) and Cr(VI) to Rice(*Oryza sativa L.*) as influenced by water management[J]. *Asian Journal of Ecotoxicology*, 2015, 10 (4):170–176.

[43] 陈 军. 壳聚糖固定化过氧化氢酶在清除卷烟烟气自由基等有害物质中的应用[D]. 无锡:江南大学, 2006.
CHEN Jun. Application of catalase immobilized by chitosan in scavenging toxicants as free radicals in cigarette smoke[D]. Wuxi: Jiangnan University, 2006.

[44] 李 萌, 郭红仙, 程晓辉. 土壤中产脲酶微生物分离及对重金属的 固化[J]. 湖北农业科学, 2013, 52(14): 3280-3282.

LI Meng, GUO Hong-xian, CHENG Xiao-hui. Isolation of urease producing bacteria from soil and its mineralization on heavy metal[J]. *Hubei Agricultural Sciences*, 2013, 52(14): 3280–3282.