王朝旭,陈绍荣,张 峰,等. 玉米秸秆生物炭及其老化对石灰性农田土壤氨挥发的影响[J]. 农业环境科学学报, 2018, 37(10): 2350-2358. WANG Chao-xu, CHEN Shao-rong, ZHANG Feng, et al. Effects of fresh and aged maize straw-derived biochars on ammonia volatilization in a calcareous arable soil[J]. *Journal of Agro-Environment Science*, 2018, 37(10): 2350-2358.

玉米秸秆生物炭及其老化对石灰性 农田土壤氨挥发的影响

王朝旭^{1,2},陈绍荣^{1,2},张峰^{1,2},崔建国^{1,2}

(1.太原理工大学环境科学与工程学院,山西 晋中 030600;2.山西省市政工程研究生教育创新中心,山西 晋中 030600)

摘 要:为探明玉米秸秆粉末、新鲜和老化(自然老化、高温老化、冻融循环老化)玉米秸秆生物炭对黄土高原石灰性农田土壤氨挥 发的影响,将不同材料按2%(质量比)与土壤充分混匀,开展为期29d的室内静态土壤培养实验,研究土壤氨挥发速率的日变化以 及整个培养期间的氨挥发累积量。同时,为探究不同材料对土壤氨挥发影响的机理,测定了培养初态和终态土壤样品的无机氮含 量、氨氧化速率和氨氧化细菌数量,并研究了不同材料对水中NH:-N的吸附特性。结果表明,在整个培养过程中,与未添加外源材 料处理相比,添加冻融循环老化生物炭或高温老化生物炭处理的氨挥发累积量减少了30%,添加自然老化生物炭或新鲜生物炭处 理的氨挥发累积量减少了23%,添加玉米秸秆粉末处理的氨挥发累积量减少了19%。施氮肥后1~10d为土壤氨挥发的主要阶段, 该阶段氨挥发累积量占整个培养过程氨挥发累积量的90%以上。不同材料对土壤氨挥发影响的机理研究表明,冻融循环老化生 物炭和高温老化生物炭较强的氨挥发抑制作用与其较强的土壤氨氧化促进作用以及NHi-N吸附能力有关。本研究有助于深刻理 解新鲜和老化玉米秸秆生物炭还田对石灰性农田土壤氨挥发的影响,为降低土壤氨挥发提供有效途径,为生物炭在黄土高原的农 业工程应用提供理论借鉴。

关键词:生物炭;老化;氨挥发;氨氧化;吸附 中图分类号:X511 文献标志码:A 文章编号:1672-2043(2018)10-2350-09 doi:10.11654/jaes.2017-1727

Effects of fresh and aged maize straw-derived biochars on ammonia volatilization in a calcareous arable soil

WANG Chao-xu^{1,2}, CHEN Shao-rong^{1,2}, ZHANG Feng^{1,2}, CUI Jian-guo^{1,2}

(1. College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China; 2. Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Jinzhong 030600, China)

Abstract: The object of this study was to examine the effects of maize-straw powder, fresh and aged maize straw-derived biochars (including spontaneous aging, high-temperature aging, and freeze-thaw cycles aging) on ammonia (NH_3) volatilization in a typical Loess Plateau calcareous arable soil. The indoor static soil incubation experiment of 29 days was carried out after adding and evenly mixing 2% (in mass) of abovementioned materials into and with the soil sample to investigate the diurnal variation of soil NH_3 volatilization rate and the cumulative NH_3 volatilization of the soils during the whole incubation period. To unravel the mechanisms that control NH_3 volatilization from the soil amended with different materials, the inorganic nitrogen content, ammonia oxidation rate, and ammonia-oxidizing bacteria amount of the soils were determined at the beginning and the end of incubation. Moreover, the NH_4^+ -N adsorption characteristics of the materials were studied. The results indicated that all the materials inhibited NH_3 volatilization of the calcareous arable soil. Compared with the soil without

作者简介:王朝旭(1981-),男,河南郑州人,副教授,从事生物质炭的土壤环境效应研究。E-mail:cxwang127@126.com

基金项目:国家自然科学基金项目(41503074, 51408397);山西省自然科学基金项目(2015011081);太原理工大学校基金面上项目(2015MS031)

Project supported: The National Natural Science Foundation of China (41503074, 51408397); The Natural Science Foundation of Shanxi Province, China (2015011081); The Special Foundation of Taiyuan University of Technology (2015MS031)

收稿日期:2017-12-16 录用日期:2018-04-27

exogenous material added, the cumulative NH₃ volatilization during the whole incubation period decreased by 30% in the freeze-thaw cycles aged or high-temperature aged biochar amended soil, decreased by 23% in the spontaneous aged or fresh biochar amended soil, and decreased by 19% in the maize-straw powder amended soil. The first 10 days after nitrogen fertilizer application was the main stage of NH₃ volatilization, which accounted for more than 90% of the cumulative NH₃ volatilization. The relatively stronger NH₃ volatilization inhibition abilities of freeze-thaw cycles aged and high-temperature aged biochars were mainly attributed to their stronger abilities of ammonia oxidation promotion and NH₄⁺-N adsorption. This study will be helpful for understanding the effects of returning fresh and aged maize straw-derived biochars back to farmland on soil NH₃ volatilization. Moreover, the study will supply an effective way to reduce soil NH₃ volatilization, and will provide a theoretical reference for the agricultural application of biochar in arable soils of the Loess Plateau.

Keywords: biochar; aged; ammonia volatilization; ammonia oxidation; adsorption

氮素是作物生长必需的营养元素,也是农业生产 可持续发展的根本要素。农田氮素的维持主要靠化 学氮肥的施入,但是过量施用氮肥,引起土壤氨挥发 增加,造成土壤氮素损失和空气污染。全世界每年农 田施用氮肥和有机肥氮素的10%~30%以氨挥发形式 损失^[1]。我国秸秆资源丰富,但秸秆还田可能加重病 虫害,甚至造成农业减产^[2],且增加氮肥氨挥发损失^[3]。 生物炭是农业有机废弃物(如秸秆)在无氧或缺氧条 件下,高温热解产生的性质稳定、难溶于水、含碳量高 的固体物质;生物炭可以提高土壤持水能力,减少土 壤养分淋失,增进土壤肥力,农业应用前景广阔^[4]。然 而,生物炭多呈碱性^[4],其农田施用对土壤氨挥发的影 响将直接影响土壤氮素损失率。

一些研究表明,生物炭施入土壤可以促进土壤氨 挥发。Feng等⑸研究发现,500 ℃和700 ℃制得小麦秸 秆生物炭使淹水稻田土壤(pH=6.38)的氨挥发累积量 增加40.8%~70.9%,其原因为生物炭提高了土壤pH 值(0.26~0.45),以及抑制了土壤硝化作用;类似地, 500 ℃制得小麦秸秆生物炭使海岸带高盐冲积土(pH =8.0)70 d的氨挥发累积量增加 25.6%~53.6%,其原因 为生物炭提高了土壤 pH 值(0.53~0.88)⁶⁶。然而也有 研究表明,生物炭抑制土壤氨挥发。Mandal等⁷⁷在南 澳大利亚农业和非农业土壤中的研究发现,家禽垃圾 生物炭(pH=8.66)和澳洲坚果壳生物炭(pH=10.84)使 土壤氨挥发累积量减少70%左右,主要原因为生物 炭较高的比表面积和含氧官能团数量使其拥有较强 的NH₄/NH₄吸附能力,以及生物炭促进土壤微生物对 NH4的固定。Taghizadeh-Toosi等¹⁸利用¹⁵N同位素示 踪技术研究发现350℃制得松木条生物炭(pH=7.80) 使草地土壤的氨挥发累积量减少45%,主要由于生物 炭对NH₃的吸附作用,以及植物对该部分NH₃的吸收 作用。以上研究之所以呈现不同结果,主要由于生物 炭制备材料和温度、土壤类型和酸碱性等不同,导致 影响土壤氨挥发的主导因素不同。然而,玉米秸秆生物炭对黄土高原石灰性农田土壤氨挥发的影响如何、 相关机理探索尚未见报道。

另一方面,生物炭农田施用过程中,会与空气、土 壤、微生物和植物根系发生相互作用,从而引起生物 炭老化^[9]。为探究生物炭农田施用的长期效应,有必 要开展老化生物炭的土壤环境效应研究。然而,目前 关于生物炭对土壤氨挥发影响的研究多以新鲜生物 炭为主,较少报道老化生物炭的研究,如Esfandbod 等^[10]研究发现,由于森林大火产生的、经过44年老化 的酸性生物炭(pH=3.86)显著降低了铝土矿废弃地 土壤(pH=11.8)的氨挥发,其将原因归结为生物炭的 酸碱性和强大的NH₄吸附能力;董玉兵等^[11]在稻麦轮 作土壤(pH=6.40)中的研究表明,与老化生物炭处理 相比,追施新鲜生物炭处理显著增加了小麦季氨挥发 累积量,其分析原因为生物炭经过老化,其表面的含 氧官能团增加,从而增强了对NH₄的吸附能力。

因此,本文以玉米秸秆为原料,自制新鲜生物炭, 并模拟其自然老化、高温老化和冻融循环老化过程, 制备老化生物炭。采用室内静态土壤培养实验,探究 新鲜和老化玉米秸秆生物炭对黄土高原石灰性农田 土壤氨挥发的影响及相关机理,为生物炭在黄土高原 的农业工程应用提供理论依据。

1 材料与方法

1.1 土壤

实验所用土壤采自山西农业大学校内试验田表层 (0~20 cm),该区域位于黄土高原东南边缘,土壤类型 为褐土。剔除植物根等杂质后,将土壤风干,然后过筛 (2 mm),密封保存备用。土壤pH值为8.14±0.02,属石 灰性土壤;有机质含量为(21.5±4.13)g·kg⁻¹;总氮含量 为(0.91±0.05)g·kg⁻¹;NH4=N、NO3=N和NO2=N含量分 别为(37.5±1.08)、(26.8±0.50)、(0.40±0.03)mg·kg⁻¹。

1.2 生物炭

1.2.1 新鲜生物炭的制备

以农业废弃生物质玉米秸秆为原料制备生物炭。 玉米秸秆采集后,将杂质去除,50℃烘干,粉碎成粉 末备用。将预制的玉米秸秆粉末置于管式电阻炉 (SK-G10123K,天津中环实验电炉)中,升温前预先通 入高纯氮气20 min(流速150 mL·min⁻¹),以形成无氧 环境;然后以5℃·min⁻¹的升温速率升温至400℃,恒 温2h。将生物炭冷却至室温(25±2℃)后过筛(2 mm),便得新鲜玉米秸秆生物炭。

1.2.2 生物炭的老化处理

采用自然老化、高温老化和冻融循环老化3种方 式制备老化生物炭。将新鲜玉米秸秆生物炭置于敞 口容器,老化培养过程中,采用称重法保持其质量含 水率为77.7%,避光培养50d。自然老化和高温老化 分别在25±2℃(室温)和50℃条件下(LRH-150型生 化培养箱,上海一恒)进行。冻融循环老化每天采用 5h(-18℃,BC-86A型冰箱,合肥美菱)+19h(25± 2℃,室温)模式进行。培养结束后,将生物炭置于阴 凉干燥处自然风干,便得自然老化、高温老化和冻融 循环老化玉米秸秆生物炭。

1.2.3 玉米秸秆粉末及其生物炭的特性表征

玉米秸秆粉末及其生物炭的pH值用pH计测定 (炭水比1:15(m/V,g/mL),Mettler Toledo Delta 320); 酸(碱)性含氧官能团数量采用Boehm滴定法测定^[12]; 比表面积、总孔容和平均孔径采用N2吸附BET法测定 (Quadrasorb SI,美国康塔)。玉米秸秆粉末、新鲜和老 化玉米秸秆生物炭的基本特性见笔者前期研究^[13]。

1.3 室内培养实验

采用室内静态土壤培养实验,研究玉米秸秆粉末 及以其为原料制得生物炭对石灰性农田土壤氨挥发 的影响。实验共设置7个处理(每个处理3次重复), 分别为:灭菌土壤(Sterilized soil,SS)、土壤(Soil,S)、 土壤+2% 玉米秸秆粉末(Soil+maize-straw powder, SMP)、土壤+2% 新鲜玉米秸秆生物炭(Soil+fresh biochar,SFB)、土壤+2% 自然老化玉米秸秆生物炭(Soil+ spontaneous aged biochar,SSAB)、土壤+2% 高温老化 玉米秸秆生物炭(Soil+high-temperature aged biochar, SHAB)和土壤+2% 冻融循环老化玉米秸秆生物炭 (Soil+freeze-thaw cycles aged biochar,SFAB)。将玉米 秸秆粉末或玉米秸秆生物炭与土壤充分混匀(质量 比,2%),并等量装入密闭的培养袋(28 cm×20 cm、PE 塑料),每个培养袋装有240 g土壤和4.80 g生物炭/秸 秆粉末。

采用稀H₂SO₄吸收法测定土壤氨挥发^[14-15]。首先 向培养袋中加入20mL蒸馏水,并与土壤充分混匀, 预先在室温(25±2℃)条件下避光培养7d。预培养结 束后,向每个培养袋中分别均匀喷洒12.84 mL 0.1 mol·L⁻¹的(NH₄)₂SO₄溶液(149.8 mg·kg⁻¹干土,按大田 用量约300 kg·hm⁻²,以N计),并与土壤充分混匀,同 时补充蒸馏水调整土壤质量含水率为18.5%。采集 48.35 g鲜土(干质量 40.80 g)作为培养初态样品后, 将预先装有 30 mL H₂SO₄(0.01 mol·L⁻¹)的平底蒸发皿 (直径 6.0 cm、高 3.5 cm)放入密闭培养袋中,在室温 (25±2 ℃)、避光条件下培养。于每天下午16:00,更 换装有30mL稀H2SO4的平底蒸发皿,并使培养袋内 外空气充分交换,同时采用称重法补充土壤水分散失 量。当天采用纳氏试剂比色法测定稀H₂SO₄的NH₂-N 吸收量,并计算土壤氨挥发速率(mg·kg⁻¹·d⁻¹,以N 计)和氨挥发累积量(mg·kg⁻¹,以N计)。连续培养29 d后,将培养袋内土壤充分混匀,然后从每个培养袋 中随机采集 30.0 g土壤样品,作为培养终态土壤样 品,并及时测定培养初态和终态土壤样品的无机氮含 量、氨氧化速率、氨氧化细菌(AOB)数量和pH值。鉴 于氨氧化作用的另一参与者氨氧化古菌(AOA)通常 在偏酸性土壤中占主导地位¹¹⁶,本文并未对AOA进行 论述。

氨氧化速率的测定采用 Kurola 等^[17]提出的氯酸钾 抑制法(nmol·g⁻¹·h⁻¹,以N计); AOB 数量的测定采用 稀释平板法(个·g⁻¹)^[18];采用2 mol·L⁻¹ KCl浸提、比色 法测定土壤NH[‡]-N、NO³-N和NO⁵-N含量(mg·kg⁻¹)^[19];土壤pH值用pH计测定(土水比1:2.5(m/V, g/mL), Mettler Toledo Delta 320)^[20]。

1.4 吸附实验

1.4.1 吸附动力学

为探明玉米秸秆粉末及以其为原料制得生物炭 对NH4-N的吸附性能,开展不同材料对水中NH4-N 的吸附动力学和吸附等温线研究。向27个(9个采样 时间点×3次重复)20 mL样品瓶中均加入0.15 g(干质 量)同一吸附材料(玉米秸秆粉末、新鲜玉米秸秆生物 炭、自然老化玉米秸秆生物炭、高温老化玉米秸秆生 物炭或冻融循环老化玉米秸秆生物炭)和15 mL NH4Cl溶液(100 mg·L⁻¹,以N计),旋紧瓶塞后在恒温 (25±1℃)条件下振荡(170 r·min⁻¹);分别于0、1、5、 20、40、60、90、150、240 min 取出3个样品瓶,采集混 匀悬浮液,过滤后(0.45 µm),采用纳氏试剂比色法测

定其NH₄-N含量。采用下式计算不同材料对NH₄-N 的吸附量:

 $q_{t} = (c_{0} - c_{t}) \cdot v/m$

式中: q_i 为t时刻吸附材料的吸附量,mg·g⁻¹:v为混合液 体积,L;c₀和c₁分别为初始和t时刻混合液中NHI-N的 浓度,mg·L⁻¹;m为吸附材料投加量,g。

1.4.2 吸附等温线

首先向21个(7个不同浓度×3次重复)20 mL样品 瓶中均加入0.15g(干质量)同一吸附材料(玉米秸秆粉 末、新鲜玉米秸秆生物炭、自然老化玉米秸秆生物炭、高 温老化玉米秸秆生物炭或冻融循环老化玉米秸秆生物 炭);然后依次分别加入15mL浓度为100、150、200、250、 300、350、400 mg·L⁻¹(以N计)的NH₄Cl溶液;恒温(25± 1℃)振荡(170 r·min⁻¹)4.0 h后,取样过滤(0.45 µm),然 后采用纳氏试剂比色法测定其NHt-N含量。实验设3 次重复。

用 Langmuir 和 Freundlich 等温吸附方程对实验 数据进行拟合, Langmuir 和 Freundlich 方程常用来描 述离子在吸附剂上的吸附作用,其吸附方程分别为:

Langmuir方程: $c_e/q_e=1/(q_{max}b)+1/q_{max} \cdot c_e$ 式中:c。为吸附平衡时混合液中NH4-N的浓度,mg· L^{-1} ; q_e 为吸附平衡时吸附材料的吸附量, mg·g⁻¹; q_{max} 为 吸附材料的最大吸附量,mg·g⁻¹;b为表征吸附剂与吸 附质间亲和力的参数,L·mg⁻¹;b值越大,吸附亲和力 越大。

Freundlich 方程: lnq_e=lnK_f+1/n·lnc_e

式中:c。为吸附平衡时混合液中NH4-N的浓度,mg· L^{-1} ; q_e 为吸附平衡时吸附材料的吸附量, mg·g⁻¹; K_i 为 Freundlich 吸附常数, mg^{1-1/n}·L^{1/n}·g⁻¹; 1/n为 Freundlich 指数。

1.5 数据分析

实验数据是平均值与三次重复的标准偏差,采用

Microsoft Excel进行平均值和标准偏差的计算,采用 OriginPro 8.5进行绘图和方程拟合。

结果与讨论 2

2.1 不同外源添加材料对土壤氨挥发的影响

2.1.1 土壤氨挥发速率

施肥后第2d,除S处理外,其他处理的氨挥发速 率均达到最大值:S处理在第3d达到最大值。添加玉 米秸秆生物炭各处理的氨挥发速率最大值(SFB,6.89 $mg \cdot kg^{-1} \cdot d^{-1}$; SSAB, 6.62 $mg \cdot kg^{-1} \cdot d^{-1}$; SHAB, 7.17 $mg \cdot$ kg⁻¹·d⁻¹;SFAB,5.31 mg·kg⁻¹·d⁻¹)均低于S和SMP处理 (S,8.91 mg·kg⁻¹·d⁻¹;SMP,8.21 mg·kg⁻¹·d⁻¹)。土壤氨 挥发主要发生在施肥后1~10 d,第11 d之后,各处理 氨挥发速率逐渐降低(图1)。

2.1.2 土壤氨挥发累积量

SS、S、SMP、SFB、SSAB、SHAB、SFAB处理1~10 d 的氨挥发累积量分别为41.3、38.4、30.4、30.0、29.8、 27.3、26.9 mg·kg⁻¹,呈逐渐降低趋势,且均占整个培养 过程氨挥发累积量的90%以上。整个培养过程中, 与S处理相比,SMP处理的氨挥发累积量减少了 19%、SFB和SSAB处理的氨挥发累积量减少了23%, SHAB和SFAB处理的氨挥发累积量减少了30%。另 外,在整个培养过程中,S处理的氨挥发累积量较SS 处理低 2.97 mg·kg⁻¹(图 2)。

研究表明,在不施氮肥条件下,酸性红壤(pH= 5.90)中添加水稻秸秆牛物炭使其7周氨挥发累积量 增加201%[21]。而本研究发现,在石灰性农田土壤中 (pH=8.14),玉米秸秆粉末及以其为原料制得生物炭 均使土壤氨挥发累积量降低(19%~30%)。与Chen 等凹的研究结果一致,发现在调整铝土矿废弃地土壤 pH值为7和8条件下,450℃制得农业废弃物生物炭 使其63 d的氨挥发累积量显著降低。李琦等^[23]通过

图1 添加玉米秸秆粉末及其生物炭条件下土壤氨挥发速率的动态变化

Figure 1 Changes of NH₃ volatilization rate of the soil amended with maize-straw powder and its derived biochars

田间试验发现,在施氮450 kg·hm⁻²(以N计)条件下, 450 ℃制得棉花秸秆生物炭使灌耕灰漠土(pH=7.80) 的氨挥发累积量较对照降低40.6%。武岩等^[24]在盐化 潮土(pH=8.20)的研究表明,生物炭使玉米生长季土 壤氨挥发累积量显著降低41.2%。上述不同结果,可 能由于土壤酸碱性不同所致。

另外,本研究发现,不同材料对石灰性农田土壤 氨挥发的抑制作用程度为:冻融循环老化生物炭/高 温老化生物炭>自然老化生物炭/新鲜生物炭>玉米秸 秆粉末,该结果可能与材料自身的酸碱性有关。与生 物炭自然老化相比,高温老化和冻融循环老化过程中 存在外界因素加速其氧化,氧化程度较高[25]。生物炭 氧化程度越高,其表面酸性含氧官能团数量越多,pH 值越低^[26]。我们前期研究表明,冻融循环老化生物 炭、高温老化生物炭、自然老化生物炭、新鲜生物炭和 玉米秸秆粉末的pH值分别为9.61、10.1、10.3、10.6、 6.60,表面羧基数量分别为0.558、0.418、0.213、0.182、 0.168 mmol·g^{-1[13]},此酸性含氧官能团可使NH₃质子化 为NH4,进而使NH4更易吸附在生物炭阳离子交换位 点上,从而降低NH₃挥发量^[27]。玉米秸秆粉末的pH 值较低,但其比表面积(0.720 m²·g⁻¹)却远低于各种生 物炭材料(2.42~5.85 m²·g⁻¹)^[13],导致其对NH4的吸附 能力较弱,该处理的氨挥发量较高。

The percentage at the column top represents the ratio of the cumulative NH₃ volatilization in the period of 1~10 days to that in the period of 1~29 days; 19%, 23%, 23%, 30%, and 30% means the decreased percentage of the cumulative NH₃ volatilization(1~29 days) in treatments of SMP,SFB, SSAB,SHAB, and SFAB compared with the treatment of S, respectively

图 2 玉米秸秆粉末及其生物炭对土壤氨挥发累积量的影响 Figure 2 Impact of maize-straw powder and its derived biochars on the cumulative NH₃ volatilization of the soil

农业环境科学学报 第37卷第10期

2.2 培养前后土壤无机氮含量、氨氧化速率和氨氧化 细菌数量的变化

与培养初态相比,培养终态各处理土壤NHi-N 含量呈降低趋势;NO3-N、NO2-N含量、氨氧化速率和 AOB数量呈增加趋势;表明在施肥后29d培养时段 内,不同处理土壤存在不同程度的氨氧化作用。不同 处理NO3-N含量、氨氧化速率和AOB数量的增加值 呈如下趋势:SFAB>SHAB>SSAB/SFB>SMP>S(表1)。

另外,与S处理相比,SMP、SFB、SSAB、SHAB、 SFAB处理培养终态的NO₃-N含量分别增加3.80、 7.05、18.15、31.63、36.19 mg·kg⁻¹,氨氧化速率分别增 加16.31、17.71、32.35、64.81、89.92 nmol·g⁻¹·h⁻¹,AOB 数量分别增加6.20×10⁴、1.40×10⁵、1.64×10⁵、1.87×10⁵、 2.66×10⁵个·g⁻¹(表1)。以上结果均表明,不同外源添 加材料对土壤氨氧化作用的促进程度为:冻融循环老 化生物炭>高温老化生物炭>自然老化生物炭/新鲜生 物炭>玉米秸秆粉末。

氨氧化作为硝化过程的第一步,是整个氮循环过程的速率控制步骤^[28]。与我们的研究一致,Prommer 等^[29]研究表明,木材生物炭促进了石灰质黑钙土(pH= 7.50)的氨氧化速率,使其由对照处理的2.40 mg·g⁻¹· d⁻¹增至10.2 mg·g⁻¹·d⁻¹(以N计)。在酸性土壤中的研 究也发现,生物炭显著促进了土壤氨氧化速率和氨氧 化微生物数量^[30-31]。本研究表明,正是由于不同材料 对土壤氨氧化作用的促进程度不同,导致土壤NH₄-N 消耗程度不同,进而导致土壤氨挥发量的差异。另 外,培养终态S处理的AOB数量是SS处理的15.9倍; 之所以S处理29 d的氨挥发累积量低于SS处理,可能 由于S处理中氨氧化微生物对NH₄-N的消耗量较大, 进而降低其氨挥发量。

2.3 玉米秸秆粉末及其生物炭对NH4-N的吸附 2.3.1 吸附动力学

为进一步探究不同外源添加材料对石灰性农田 土壤氨挥发影响的机理,研究了玉米秸秆粉末及其生 物炭对水中NH4-N的吸附性能。新鲜生物炭和自然 老化生物炭对水中NH4-N的吸附约在60min达到吸 附平衡,高温老化生物炭约在40min达到吸附平衡, 冻融循环老化生物炭约在20min达到吸附平衡。新 鲜生物炭、自然老化生物炭、高温老化生物炭和冻融 循环老化生物炭在240min时的吸附量分别为4.02、 4.19、4.76、5.38mg·g⁻¹,分别是玉米秸秆粉末的2.16、 2.25、2.56、2.89倍(图3)。 2.3.2 吸附等温线 2018年10月

表1 培养前后土壤无机氮含量、氨氧化速率和氨氧化细菌数量的变化

Table 1 Changes of inorganic nitrogen content, ammonia oxidation rate, and ammonia-oxidizing bacteria amount of

the soil before and after incubation								
项目		SS	S	SMP	SFB	SSAB	SHAB	SFAB
$NH_4^+-N/mg \cdot kg^{-1}$	培养初态	187.56±6.97	186.35±2.10	177.58±4.30	181.22±5.77	177.74±7.13	174.91±3.43	183.07±5.71
	培养终态	143.04±5.66	111.00±6.65	113.40±7.82	107.34±5.44	75.22±8.14	83.44±3.20	65.98±6.71
	变化值	-44.52	-75.35	-64.18	-73.88	-102.52	-91.47	-117.09
$NO_3^N/mg \cdot kg^{-1}$	培养初态	33.83±3.53	32.89±4.81	32.22±7.92	31.58±6.43	26.52±2.82	29.83±2.54	23.93±3.92
	培养终态	31.70±3.39	53.63±7.47	57.43±2.85	60.68±4.64	71.78±3.02	85.26±3.45	89.82±4.15
	变化值	-2.13	20.74	25.21	29.10	45.26	55.43	65.89
$NO_2^N/mg \cdot kg^{-1}$	培养初态	0.62±0.14	1.07±0.33	1.16±0.16	1.66±0.27	1.63±0.18	2.31±0.58	2.96±0.58
	培养终态	1.91±0.35	9.46±0.55	7.17±0.58	9.84±0.71	8.85±0.63	7.22±1.00	13.68±0.78
	变化值	1.29	8.39	6.01	8.18	7.22	4.91	10.72
氨氧化速率/nmol·g ⁻¹ ·h ⁻¹	培养初态	0.54±0.16	59.32±4.40	61.49±10.48	66.45±9.86	70.01±9.42	72.93±1.33	83.25±8.57
	培养终态	6.09±1.43	71.91±10.30	88.22±8.75	89.62±6.47	104.26±6.92	136.72±7.12	161.83±7.39
	变化值	5.55	12.59	26.73	23.17	34.25	63.79	78.58
AOB数量/×10 ⁵ 个・g ⁻¹	培养初态	0.000 ± 0.000	1.67±0.237	2.28±0.429	2.43±0.299	2.95±0.347	2.56 ± 0.229	2.75±0.393
	培养终态	0.172±0.039	2.74±0.417	3.36±0.442	4.14±0.140	4.38±0.285	4.61±0.486	5.40±0.464
	变化值	0.172	1.07	1.08	1.71	1.43	2.05	2.65

注:数值是平均值与三次重复的标准偏差。

Note: Values are given as mean±standard deviation from triplicate determinations.

Figure 3 Kinetics of NH[‡]-N adsorbed onto maize-straw powder and its derived biochars

玉米秸秆粉末及其生物炭对水中NH₄-N的吸附用Langmuir和Freundlich等温吸附方程进行拟合(图4、图5)。Langmuir模型中最大吸附量 q_{max} 的拟合结果表明,冻融循环老化生物炭对NH₄-N的最大吸附量最高(14.9 mg·g⁻¹),玉米秸秆粉末最低(8.31 mg·g⁻¹)。Langmuir模型中b为表征吸附剂与吸附质间亲和力的参数,b值越大,吸附亲和力越大^[32];本研究中b值的拟合结果为:冻融循环老化生物炭>高温老化生物

炭>自然老化生物炭>新鲜生物炭>玉米秸秆粉末。 因此,Langmuir模型拟合分析表明,不同材料对水中 NH4-N的吸附能力从大到小依次为冻融循环老化生 物炭>高温老化生物炭>自然老化生物炭>新鲜生物 炭>玉米秸秆粉末(表2)。

Freundlich模型中吸附常数*K*_i反映吸附剂吸附能力的强弱,Freundlich指数1/n反映吸附剂吸附位点能量分布的特征。*K*_i值越大,表明吸附能力越强;1/n值越小,表明吸附强度越大,尤其当0.1<1/n<1时,表明其易于吸附^{133]}。拟合结果表明,不同材料的*K*_i值从大到小依次为冻融循环老化生物炭>高温老化生物炭> 自然老化生物炭>新鲜生物炭>玉米秸秆粉末;1/n值从小到大亦呈同样趋势。因此,Freundlich模型拟合分析也表明,不同材料对水中NH₄-N的吸附能力从大到小依次为冻融循环老化生物炭>高温老化生物炭>自然老化生物炭>新鲜生物炭>玉米秸秆粉末(表2)。

Langmuir模型描述吸附质在吸附剂表面呈单分子 层分布,而Freundlich模型描述的是多分子层吸附^{134]}。 本研究中两种模型的决定系数(*R*²)均大于 0.96,但 Freundlich模型对数据的拟合程度更高,对同一材料 而言,其决定系数(*R*²)均高于Langmuir模型拟合结果。 因此,玉米秸秆粉末及其生物炭对水中NHi-N的吸附 更符合Freundlich模型,为多分子层吸附过程。

农业环境科学学报 第37卷第10期

23	56	
20	50	

表2 玉米秸秆粉末及其生物炭对 NHI-N 的吸附等温曲线 Langmuir 和 Freundlich 模型拟合参数

Table 2 Langmuir and Freundlich model parameters for NH [‡] -N adsorbed by maize-straw powder and its derived bi	iochar
---	--------

++++	Langmuir模型			Freundlich模型		
初杆石协	$q_{ m max}/ m mg \cdot g^{-1}$	$b(\times 10^{-3})/L \cdot mg^{-1}$	R^2	$K_{\mathrm{f}}/\mathrm{mg}^{\mathrm{1-1/n}} \cdot \mathrm{L}^{\mathrm{1/n}} \cdot \mathrm{g}^{\mathrm{-1}}$	1/n	R^2
玉米秸秆粉末	8.31	3.92	0.96	0.15	0.60	0.97
新鲜玉米秸秆生物炭	10.76	7.05	0.97	0.54	0.46	0.98
自然老化玉米秸秆生物炭	12.64	7.94	0.98	0.71	0.45	0.99
高温老化玉米秸秆生物炭	13.30	8.02	0.97	0.74	0.45	0.99
冻融循环老化玉米秸秆生物炭	14.90	9.57	0.98	0.99	0.43	0.99

图4 玉米秸秆粉末及其生物炭对NH↓-N的Langmuir等温 吸附模型拟合曲线

Figure 4 Langmuir adsorption isotherms of NH₄⁺-N adsorbed by maize-straw powder and its derived biochars

图5 玉米秸秆粉末及其生物炭对NHI-N的Freundlich等温 吸附模型拟合曲线

生物炭对NH[‡]-N的吸附,是影响氨挥发的主要 因素^[22]。Steiner等^[35]研究表明,在家禽垃圾42d堆肥 过程中,添加20%松木屑生物炭使其氨挥发浓度降 低64%,主要原因为生物炭对NH₃/NH[‡]的吸附。Cao 等^[36]的研究也表明,生物炭表面积巨大,孔隙结构丰 富,并带有负电荷,具有较强的吸附能力和离子交换 能力,施入土壤后可以吸附大量的NH[‡]-N,使土壤氨 挥发量降低。

本研究对不同材料进行的吸附动力学和吸附等 温线实验均表明,冻融循环老化生物炭和高温老化生 物炭对水中NHI-N的吸附能力较强,将其施入土壤 后,较多的NH;被吸附,而NH;作为氨氧化微生物的 底物,通过氨氧化作用转化为NO₂,从而降低土壤氨 挥发量。与其他材料相比,冻融循环老化生物炭和高 温老化生物炭较强的NHI-N吸附能力,与其表面较高 的羧基数量(分别为0.558、0.418 mmol·g⁻¹)和酸性含 氧官能团数量(分别为1.247、1.142 mmol・g⁻¹)有关^[13]。 通过不同温度制得玉米秸秆和玉米芯生物炭对水中 NHI-N的吸附实验也表明, 与600 ℃制得生物炭相 比,400 ℃制得生物炭较强的NH‡-N吸附能力,与其 表面较多的酸性含氧官能团数量有关^[37]。Nguyen 等1381研究也表明,老化生物炭和低温热解制备生物炭 较强的NHI-N吸附能力与其表面较高的酸性含氧官 能团数量有关。另外,施用生物炭抑制土壤氨挥发的 其他原因还包括NH3与生物炭的羧基反应形成NH3 或酰胺基团^[39],以及生物炭吸附的NH₃可被植物有效 利用等[40]。

3 结论

(1)不同外源添加材料对石灰性农田土壤氨挥发的抑制作用程度为:冻融循环老化玉米秸秆生物炭/ 高温老化玉米秸秆生物炭>自然老化玉米秸秆生物 炭/新鲜玉米秸秆生物炭>玉米秸秆粉末。

(2)冻融循环老化玉米秸秆生物炭和高温老化玉

米秸秆生物炭较强的氨挥发抑制作用与其较强的土 壤氨氧化促进作用以及NHI-N吸附能力有关。

(3) 施氮肥后 1~10 d 为土壤氨挥发的主要阶段, 该阶段氨挥发累积量占整个培养过程氨挥发累积量 的90%以上。

参考文献:

- Bouwman A F, Boumans L J M, Batjes N H. Estimation of global NH₃ volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J]. *Global Biogeochemical Cycles*, 2002, 16(2):1024. doi:10.1029/2000GB001389.
- [2] 李正东, 李 懋, 潘根兴, 等. 作物秸秆还田的新问题[J]. 中国农学 通报, 2013, 29(32): 204-208.

LI Zheng-dong, LI Mao, PAN Gen-xing, et al. Challenges for crop straw return[J]. *Chinese Agricultural Science Bulletin*, 2013, 29(32): 204-208.

- [3] 王德建,常志州,王 灿,等. 稻麦秸秆全量还田的产量与环境效应 及其调控[J]. 中国生态农业学报, 2015, 23(9):1073-1082.
 WANG De-jian, CHANG Zhi-zhou, WANG Can, et al. Regulation and effect of 100% straw return on crop yield and environment[J]. *Chinese Journal of Eco-Agriculture*, 2015, 23(9):1073-1082.
- [4] Lehmann J, Joseph S. Biochar for environmental management: Science and technology[M]. 2nd Edition. London: Earthscan Publications Ltd., 2009:1-12.
- [5] Feng Y F, Sun H J, Xue L H, et al. Biochar applied at an appropriate rate can avoid increasing NH₃ volatilization dramatically in rice paddy soil[J]. *Chemosphere*, 2017, 168:1277–1284.
- [6] Sun H J, Lu H Y, Chu L, et al. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH₃ volatilization in a coastal saline soil[J]. Science of the Total Environment, 2017, 575:820-825.
- [7] Mandal S, Thangarajan R, Bolan N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. *Chemosphere*, 2016, 142:120–127.
- [8] Taghizadeh-Toosi A, Clough T J, Sherlock R R, et al. A wood based low-temperature biochar captures NH₃-N generated from ruminant urine-N, retaining its bioavailability[J]. *Plant and Soil*, 2012, 353 (1/ 2):73-84.
- [9] Joseph S D, Camps-Arbestain M, Lin Y, et al. An investigation into the reactions of biochar in soil[J]. Australian Journal of Soil Research, 2010, 48(6/7):501-515.
- [10] Esfandbod M, Phillips I R, Miller B, et al. Aged acidic biochar increases nitrogen retention and decreases ammonia volatilization in alkaline bauxite residue sand[J]. *Ecological Engineering*, 2017, 98: 157-165.
- [11] 董玉兵,吴 震,李 博,等.追施生物炭对稻麦轮作中麦季氨挥发 和氮肥利用率的影响[J]. 植物营养与肥料学报, 2017, 23(5): 1258-1267.

DONG Yu-bing, WU Zhen, LI Bo, et al. Effects of biochar reapplication on ammonia volatilization and nitrogen use efficiency during wheat season in a rice-wheat annual rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(5):1258-1267.

- [12] Zhang G X, Zhang Q, Sun K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures[J]. *Environmental Pollution*, 2011, 159(10):2594–2601.
- [13] 王朝旭, 陈绍荣, 张 峰, 等. 老化玉米秸秆生物炭对碱性农田土 壤氨氧化作用的影响[J]. 生态环境学报, 2018, 27(1):31-39.
 WANG Chao-xu, CHEN Shao-rong, ZHANG Feng, et al. Effects of aged maize straw-derived biochars on ammonia oxidation in an alkaline farmland soil[J]. *Ecology and Environmental Sciences*, 2018, 27 (1):31-39.
- [14] Guiziou F, Beline F. In situ measurement of ammonia and greenhouse gas emissions from broiler houses in France[J]. *Bioresource Technolo*gy, 2005, 96(2):203–207.

 [15] 周 伟,田玉华,曹彦圣,等.两种氨挥发测定方法的比较研究[J]. 土壤学报,2011,48(5):1090-1095.
 ZHOU Wei, TIAN Yu-hua, CAO Yan-sheng, et al. A comparative study on two methods for determination of ammonia volatilization[J].

- Acta Pedologica Sinica, 2011, 48(5):1090-1095.
 [16] Zhang L M, Hu H W, Shen J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. *The ISME Journal*, 2012, 6 (5):1032-1045.
- [17] Kurola J, Salkinoja-Salonen M, Aarnio T, et al. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil[J]. FEMS Microbiology Letters, 2005, 250(1):33-38.
- [18] 林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社, 2010:32-52.

LIN Xian-gui. Principles and methods of soil microbiology research [M]. Beijing; Higher Education Press, 2010; 32-52.

[19] 国家环境保护总局.水和废水监测分析方法[M].四版.北京:中国 环境科学出版社,2002:258-285.
State Environmental Protection Administration. Methods for monitoring and analysis of water and wastewater[M]. 4th Edition. Beijing: China Environmental Science Press, 2002:258-285.

[20] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 1999:12-13.

LU Ru-kun. Soil agrochemistry analysis methods[M]. Beijing: China Agricultural Science and Technology Press, 1999:12-13.

[21]何飞飞,梁云姗,荣湘民,等.培养条件下生物炭对红壤菜地土氨 挥发和土壤性质的影响[J].云南大学学报(自然科学版),2014,36 (2):299-304.

HE Fei-fei, LIANG Yun-shan, RONG Xiang-min, et al. Effects of biochar on ammonia volatilisation and soil properties of vegetableplanting red soil in a laboratory[J]. *Journal of Yunnan University* (*Natural Sciences Edition*), 2014, 36(2):299-304.

- [22] Chen C R, Phillips I R, Condron L M, et al. Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand [J]. *Plant and Soil*, 2013, 367(1):301–312.
- [23] 李 琦, 廖 娜, 张 妮, 等. 棉花秸秆及其生物炭对滴灌棉田氨 挥发的影响[J]. 农业环境科学学报, 2014, 33(10):1987-1994.

农业环境科学学报 第37卷第10期

LI Qi, LIAO Na, ZHANG Ni, et al. Effects of cotton stalk and its biochar on ammonia volatilization from a drip irrigated cotton field[J]. *Journal of Agro-Environment Science*, 2014, 33(10):1987-1994.

- [24] 武 岩, 红 梅, 林立龙, 等. 不同施肥措施对河套灌区盐化潮土 氨挥发及氧化亚氮排放的影响[J]. 土壤, 2017, 49(4):745-752.
 WU Yan, HONG Mei, LIN Li-long, et al. Influence of different fertilization measures on NH₃ volatilization and N₂O emission in salined flavo-aquic soil of Hetao irrigation area[J]. Soils, 2017, 49(4):745-752.
- [25] 苗 微. 生物炭陈化对土壤养分和水稻生长的影响[D]. 沈阳:沈阳 农业大学, 2014.

MIAO Wei. Ageing effect of biochar on soil nutrients and growth of rice[D]. Shenyang:Shenyang Agricultural University, 2014.

- [26] Cheng C, Lehmann J. Ageing of black carbon along a temperature gradient[J]. Chemosphere, 2009, 75(8):1021–1027.
- [27] Bandosz T J. Chapter 5: Desulfurization on activated carbons[M]//Bandosz T J. Interface science and technology. Amsterdam: Elsevier, 2006:231-292.
- [28] Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology[J]. Annual Review of Microbiology, 2001, 55(1):485-529.
- [29] Prommer J, Wanek W, Hofhansl F, et al. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial[J]. *PloS One*, 2014, 9:e86388.
- [30] He L L, Zhao X, Wang S Q, et al. The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols[J]. Soil & Tillage Research, 2016, 164:52–62.
- [31] 王晓辉, 郭光霞, 郑瑞伦, 等. 生物炭对设施退化土壤氮相关功能 微生物群落丰度的影响[J]. 土壤学报, 2013, 50(3):624-631.
 WANG Xiao-hui, GUO Guang-xia, ZHENG Rui-lun, et al. Effect of biochar on abundance of N-related functional microbial communities in degraded greenhouse soil[J]. Acta Pedologica Sinica, 2013, 50(3): 624-631.

- [32] Raji C, Anirudhan T S. Batch Cr (M) removal by polyacrylamidegrafted sawdust: Kinetics and thermodynamics[J]. Water Research, 1998, 32(12):3772-3780.
- [33] Malandrino M, Abollino O, Giacomino A, et al. Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands[J]. *Journal* of Colloid and Interface Science, 2006, 299(2):537-546.
- [34] Coelho G F, Goncalves Jr A C, Tarley C R T, et al. Removal of metal ions Cd(II), Pb(II), and Cr(III) from water by the cashew nut shell Anacardium occidentale L.[J]. Ecological Engineering, 2014, 73:514– 525.
- [35] Steiner C, Das K C, Melear N, et al. Reducing nitrogen loss during poultry litter composting using biochar[J]. *Journal of Environmental Quality*, 2010, 39(4):1236–1242.
- [36] Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. *Bioresource Technology*, 2010, 101(14):5222-5228.
- [37] 武丽君,王朝旭,张 峰,等.玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能[J].中国环境科学,2016,36(1):74-81.
 WU Li-jun, WANG Chao-xu, ZHANG Feng, et al. The adsorption characters of inorganic nitrogen in aqueous solution by maize straw-and corn cob-derived biochars[J]. *China Environmental Science*, 2016, 36(1):74-81.
- [38] Nguyen T T N, Xu C Y, Tahmasbian I, et al. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis[J]. Geoderma, 2017, 288:79-96.
- [39] Spokas K A, Novak J M, Venterea R T. Biochar's role as an alternative N-fertilizer: ammonia capture[J]. *Plant and Soil*, 2012, 350(1/2): 35-42.
- [40] Taghizadeh-Toosi A, Clough T J, Sherlock R R, et al. Biochar adsorbed ammonia is bioavailable[J]. *Plant and Soil*, 2012, 350(1/2): 57–69.