焦岗湖流域农田土壤重金属污染及潜在生态风险评价

韦绪好,孙庆业*,程建华,窦智勇,王 琛

(安徽大学资源与环境工程学院,合肥 230601)

摘 要:以焦岗湖流域农田土壤为研究对象,分析流域内农田土壤中重金属As、Cd、Cr、Cu、Pb和Zn的含量及污染特征,并采用地 累积指数法和潜在生态危害指数法评价了该区域农田土壤中重金属污染状况和潜在的生态风险。结果表明:研究区农田土壤中重 金属As、Cd、Cr平均含量高于背景值,并表现出不同程度的积累,而Cu、Pb、Zn平均含量低于背景值;地累积指数评价结果表明该 区域农田土壤重金属污染总体表现为无污染到中污染状态,主要污染物为Cd、As和Cr;潜在生态危害指数法评价结果表明研究区 土壤潜在生态风险为中等,重金属的潜在生态危害依次为Cd>As>Cu>Pb>Cr>Zn;焦岗湖流域农田土壤重金属含量在空间分布上总 体表现为流域西南部及东部区域较高、中部及北部区域较低。

关键词:农田土壤;重金属;地累积指数;潜在生态风险;焦岗湖流域

中图分类号:X820.4 文献标志码:A 文章编号:1672-2043(2015)12-2304-08 doi:10.11654/jaes.2015.12.008

Pollution and Potential Ecological Risk Assessment of Heavy Metals in Farmland Soils in Jiaogang Lake Basin, China

WEI Xu-hao, SUN Qing-ye*, CHENG Jian-hua, DOU Zhi-yong, WANG Chen

(School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China)

Abstract: In this study, concentrations and pollution characteristics of As, Cd, Cr, Cu, Pb, and Zn in farmland soils from Jiangang Lake basin were investigated. The ecological risk of heavy metal pollution in the soils was assessed using the methods of geo-accumulation index and potential ecological risk index. Results indicated that the average concentrations of As, Cd, and Cr were higher than the local back-ground values, showing their accumulation. However, the average concentrations of Cu, Pb, and Zn were still lower than the local back-ground values. Geo-accumulation index showed that heavy metal pollution in these farmland soils studied was from no to moderate pollution, with Cd, As and Cr being major pollutants. The potential ecological risk of the studied farmland soils was at medium level, and the potential ecological hazard of heavy metals was in order of Cd>As>Cu>Pb>Cr>Zn. The concentrations of heavy metals were higher in soils from southwest and east areas than from central and north areas of Jiaogang Lake basin.

Keywords : Tarmland soil; heavy metal; geo-accumulation index; potential ecological risk; Jiaogang Lake basin

土壤作为农业生产的重要基础,其质量的优劣 直接影响到粮食安全、土壤资源的合理开发利用和土 壤环境的可持续发展^{III}。随着工业发展和农用化学物 质种类及数量的增加,农田土壤重金属污染日益严 重,污染面积逐渐扩大。由于重金属不能被土壤微生 物降解,而在土壤中不断积累,且可被植物富集,土壤 一旦遭受重金属的污染就很难予以彻底消除^{III}。土壤

基金项目:国家科技重大专项(2012ZX07204-004)

中重金属可通过迁移、转化、富集影响农产品的质量, 最终通过食物链危害人体健康¹³⁻⁴¹。

目前,国内外已广泛开展了土壤中重金属污染及 其生态风险评价研究^[5-9]。采用地累积指数法和生态风 险指数法评价土壤中的重金属污染状况以及潜在生 态风险,同时结合多元统计分析方法和 GIS 技术,揭 示重金属的空间分布特征和规律性^[10-13],为区域土壤 资源的合理利用与保护提供支持。

淮河流域是我国重要的粮食产区,焦岗湖流域地 处沙颍河与淮河干流交汇处的东北部,南临淮河干 流、西接沙颍河,含淮南市毛集实验区和阜阳市颍上 县部分区域,流域总面积约480 km²,是皖北地区重要

收稿日期:2015-07-14

作者简介:韦绪好(1988—),男,安徽蚌埠人,硕士研究生,研究方向为 恢复生态学。E-mail:494525008@qq.com

^{*} 通信作者: 孙庆业 E-mail: sunqingye@ahu.edu.cn

的农业生产区,其土壤质量的好坏直接影响粮食的安 全生产。本文以焦岗湖流域为研究区,分析农田土壤 中重金属含量,运用地累积指数法和潜在生态风险指 数法评价该流域土壤的污染状况和潜在生态风险,从 而为该区域农田土壤环境保护和安全利用提供科学 依据。

1 材料与方法

1.1 研究区概况

焦岗湖流域地处暖温带与亚热带过渡地区,气候 温暖湿润,四季分明。年平均气温在14~17℃之间,1 月平均温度为0~4℃、7月为27~29℃,无霜期约为 200~250 d。流域内地势西北高、东南低,土壤类型主 要为砂姜黑土、潮土、水稻土和黄棕壤等,其中砂姜黑 土和潮土占优势。研究区内农作物一年两熟,主要农 作物为小麦、水稻、大豆、玉米等,大部分区域实行稻-麦轮作和麦-玉米轮作。研究区内以农业生产为主,工 业欠发达,可引起土壤污染的工业污染源主要集中于 毛集实验区以及颍上县工业园等很小范围内。

1.2 土壤样品采集、预处理与分析

土壤采样的布点遵循"网格布点、力求均匀,选择 主要土类、兼顾区域内分布面积较小土类,避开居民 集中区、交通干线、污染源及其他人为设施干扰"的原则,在整个流域内共设置了41个采样点(图1),网格密度基本保持在4km×4km。用内径8cm的PVC塑料管采集0~20cm深度的耕层土壤,采样时除去地表凋落物,每个样点采集属于同一土壤类型的3个子样组合为一个样品,3个子样采样点呈三角形分布,子样采样点之间的距离至少在50m以上。样品采集后放入自封袋中密封保存。

土壤样品于实验室阴凉处自然风干,剔除石砾、 植物根系和碎屑等杂物,用玛瑙研钵研磨后过 100 目尼龙筛。采用重铬酸钾-硫酸法分析有机质,酸度计 测量 pH 值^[11];土壤样品经 HCl-HNO₃-HClO₄-HF 消 解后^[12],选择电感耦合等离子体共振发射光谱仪^[15] (IRIS Intrepid II)测定 As、Cd、Cr、Cu、Pb 和 Zn 的含 量。

1.3 评价方法

1.3.1 地累积指数法

地累积指数(Index of geo-accumulation),又称 Mull 指数,被广泛应用于对沉积物或土壤重金属污染 的评价^[16-18],其计算公式为:

$$I_{\text{geo}} = \log_2 \left[\frac{C_i}{(k \times B_i)} \right]$$

图 1 采样点分布示意 Figure 1 Sketch map of sampling sites

式中: C_i 为重金属 i的实测含量, mg·kg⁻¹;参数 k 是考虑到岩石差异、成岩作用可能引起的背景值波动而取的系数, 此处取 k=1.5; B_i 为参比值, mg·kg⁻¹, 本研究采用淮南市 A 层土壤重金属含量背景值^[19]。

地累积指数的分级标准与污染程度的划分见表1。

表1地累积指数与污染程度分级

Table 1 Geo-accumulation index and pollution classification

$I_{ m geo}$	≤ 0	0~1	1~2	2~3	3~4	4~5	≥5
级别	0	1	2	3	4	5	6
污染程度	无	轻-中	中	中-强	强	强极强	极强

1.3.2 潜在生态危害指数法

潜在生态危害指数法(Potential ecological risk index)是瑞典学者 Hakanson^[20]提出的,是用于评价重 金属潜在生态风险的一种相对快速、简便和标准的方法。计算公式如下:

$$RI = \sum_{i=1}^{n} E_{r}^{i} = \sum_{i=1}^{n} (T^{i} \times C_{r}^{i}) = \sum_{i=1}^{n} \left(T^{i} \times \frac{C_{s}^{i}}{C_{n}^{i}} \right)$$

式中:*RI*为多种重金属综合潜在生态风险指数;*E*;为 重金属*i*的单项潜在风险系数;*Tⁱ*为采样点重金属*i* 的毒性响应系数^[21](表 2);*C*;为重金属*i*的污染指数; *C*;为重金属*i*的实测含量,mg·kg⁻¹;*C*;为重金属*i*的参 比值,mg·kg⁻¹,本研究中采用淮南市土壤重金属背景 值^[19](表 2)。

土壤潜在生态风险指数和生态危害分级见表 3。

表 2 土壤中重金属的背景值和毒性响应系数

Table 2 Background values and toxic coefficients of soil heavy metals

项目	Cd	As	Cu	Pb	Cr	Zn
土壤重金属背景值/ mg·kg ⁻¹	0.061	10.45	24.16	30.47	64.93	80.81
重金属毒性响应系数	30	10	5	5	2	1

农业环境科学学报 第 34 卷第 12 期

表 3 Hakanson 潜在生态危害分级^[22]

Table 3 Classification of Hakanson potential ecological harm

E_r^i	污染程度	RI	污染程度
$E_{r}^{i} < 40$	轻微	<i>RI</i> <150	轻微
$40 \leq E_r^i < 80$	中等	$150 \leq RI < 300$	中等
$80 \le E_r^i < 160$	较强	$300 \leq RI < 600$	强
$160 \le E_r^i < 320$	很强	$RI \ge 600$	很强
$E_r^i \ge 320$	极强		

2 结果与讨论

2.1 土壤重金属的含量

研究区内土壤重金属含量统计分析结果见表 4。 对研究区内 41 个土壤样品的分析表明,土壤平均 pH 值为 7.35,属弱碱性土壤,有机质平均含量为 22.93 g·kg⁻¹,研究区内土壤重金属元素 Cd、Cr、Cu、Pb、Zn 含量的最大值均没有超过土壤环境质量标准^[23](GB 15618—1995)二级标准限定值,但个别样点 As 含量 超过二级标准,最高值达到 51.17 mg·kg⁻¹,高于二级 标准限定值 25 mg·kg⁻¹。与淮南市土壤背景值^[19]比较 发现,As、Cd、Cr元素含量的平均值均超过背景值,分 别是背景值的 3.61、4.39、1.48 倍,这 3 种元素的超标 点位达到 95%~100%。Cu、Pb 和 Zn 平均值虽然未超 过背景值,但在所调查的 41 个样点中,仍分别有 32%、5%和 54%的点位超标。这一结果表明,研究区 农田土壤已呈现一定程度的重金属累积现象。

变异系数是反映样品变异程度的一个统计量,能 在一定程度反映研究区土壤重金属含量的变化。变异 系数<0.10为弱变异,0.10~0.30为中等变异,>0.30为 强变异^[24-26]。从变异系数来看,6种重金属变异程度由 大到小依次为Zn>Cd>Cu>Cr>Pb>As,其中Zn、Cd、Cu 变异系数明显高于其他元素,分别为0.49、0.37、0.33, 属强变异程度,其他元素变异系数介于0.18~0.24之

Table 4 Statistic values of h	neavy metal concentrations in soils
-------------------------------	-------------------------------------

元素	最小值/ mg∙kg ⁻¹	最大值/ mg•kg ⁻¹	平均值/ mg•kg⁻¹	标准差/ mg•kg⁻¹	变异系数	淮南市土壤背景 值/mg·kg ⁻¹	超标率	平均值超标 倍数	国家土壤环境质量标准 (二级)/mg·kg ⁻¹
As	19.8	51.17	37.76	6.69	0.18	10.45	100%	3.61	25.00
Cd	0.04	0.46	0.27	0.10	0.37	0.06	98%	4.39	0.60
Cr	35.48	151.66	95.84	22.97	0.24	64.93	95%	1.48	300.00
Cu	7.94	47.26	23.96	7.89	0.33	24.16	32%	0.99	100.00
Pb	8.55	34.56	23.43	4.44	0.19	30.47	5%	0.77	300.00
Zn	18.17	154.65	80.25	39.66	0.49	80.81	54%	0.99	250.00
有机质	12.31	37.00	22.97	2.25	0.29	—	_	—	—
$_{\rm pH}$	5.54	8.60	7.35	1.14	0.16	_	_	_	_

间,属中等变异程度。研究区土壤中 Zn、Cu、Cd、Cr、 Pb、As 受外界干扰比较显著,结合相关文献^[27-28],初步 认为这种干扰可能主要来自于研究区内工农业生产 活动,尤其是化肥、农药的使用。

2.2 农田土壤重金属的空间分布

ArcGIS 是解释空间分布和实施环境监测的重要 工具^[29],克里格插值法是对离散变量进行无偏插值的 可靠方法,插值结果可以直观地显示重金属元素的空间分布与变化特性^[30]。图 2 是通过 ArcGIS 的克里格插值法绘制出的研究区 6 种重金属空间分布图。

由图 2 可以看出,在所研究的 6 种重金属中,As、 Cr、Pb 和 Zn 的空间分布具有一定相似性,基本表现 为地处流域西南部的沙颍河与淮河干流交汇处 4 种 重金属含量较高、中北部区域较低,流域东部的局部

图 2 研究区土壤重金属含量空间分布

Figure 2 Spatial distribution of heavy metals in studied area

区域4种元素的含量也较高。Cd和Cu在空间分布上 表现出一定的相似性,即东、西部含量较高,而中部含 量较低。所研究的焦岗湖流域在地形上呈现出西北 高、东南低的特点,尽管地势较高的北部地区6种重 金属的含量较低,但地势低洼的焦岗湖及其周围区域 并未表现出较高的重金属含量。这一结果表明地表径 流并未对流域内重金属空间分布产生显著的影响。焦 岗湖流域沟渠纵横、水土流失较轻,且入湖河流上闸 坝众多,除降雨量大的夏季外,入湖河流内的水体基 本处于不流动状态,阻碍了流域内重金属的迁移,因 此研究区内重金属空间分布上的差异可能主要与流 域内不同区域工农业生产活动所排放的重金属数量 与强度有关。

2.3 土壤重金属污染程度评价

2.3.1 基于地累积指数的土壤重金属污染评价

表 5 为利用地累积指数法评价土壤污染情况的 结果统计。在采集的 41 份土壤样品中,重金属 Cr、 Cu、Pb、Zn 的地累积指数平均值都小于零,绝大部分 点位处于轻-中等污染等级之下。Pb 的地累积指数在 41 个土壤样品中均小于零,表明焦岗湖流域农田土 壤未受到 Pb 污染;处于轻-中等污染程度的 Cu 和 Zn 分别仅有 4 个和 9 个点位,Cr 为 19 个;As 和 Cd 的

Table 5 Geo-accumulation index (I_{geo}) of soil heavy metals

		污染指数	[样品污染点个数			
指标	最小值	最大值	平均值	无污染	轻-中等 污染	中等 污染	中-强等 污染
$\overline{I_{ m geo}(m As)}$	0.34	1.71	1.24	_	7	34	_
Igeo(Cd)	-1.19	2.33	1.43	1	6	26	8
$I_{\rm geo}({ m Cr})$	-1.46	0.64	-0.07	22	19	—	—
Igeo(Cu)	-2.19	0.38	-0.67	37	4	_	—
$I_{\rm geo}({\rm Pb})$	-2.42	-0.40	-0.99	41	—	—	—
$I_{\text{geo}}(\mathbf{Zn})$	-2.74	0.35	-0.80	32	9	_	—

农业环境科学学报 第 34 卷第 12 期

地累积指数平均值都大于 1,As 整体表现为轻-中等 污染至中等污染,而 Cd 则表现为轻-中等污染至中-强等污染。这表明,焦岗湖流域农田土壤中 As 和 Cd 的污染程度较高,所采集的土壤样品受到 As 和 Cd 的污染较严重。Atafar 等^[31]研究发现,过量使用化肥导 致土壤中重金属显著积累,特别是 As 和 Cd 的积累 最为显著,据相关研究报道,淮南市化肥年使用量达 729.46 kg·hm^{-2[32]},本文的研究对象为焦岗湖流域农田 土壤,伴随着农业活动的进行,土壤中施入了大量 的肥料,造成 As 和 Cd 的积累。因此,过量使用化 肥、杀虫剂可能是造成农田土壤中 As 和 Cd 等超标 的原因。

2.3.2 基于潜在生态危害指数的土壤重金属污染评价

土壤中的重金属可以通过食物链传递,最终对 人体健康造成危害,因此评价重金属污染土壤的潜 在生态危害至关重要[3-34]。为了反映特定区域的差异 性,选择淮南市土壤背景值作为比较标准,对研究区 重金属 As、Cd、Cr、Cu、Pb 和 Zn 的潜在生态危害进行 评价。依据潜在生态危害指数法的评价结果(表 6)和 Hakanson 潜在生态危害分级(表 3),在采集的 41 个 土壤样品中,Cd 元素的单项污染潜在生态危害系数 平均值为 131.69,表现为较强生态危害,其中 58.54% 的样品为强生态危害,29.27%的样品为很强生态危 害,其余12.19%的样品为中等生态危害;As元素的 单项污染潜在生态危害系数平均值为 36.13, 处于轻 微至中等危害程度,其中轻微和中等生态危害程度的 点位数分别为 31 个和 10 个,分别占总样品数的 75.60%和 24.40%; Cr、Cu、Pb、Zn 的单项污染潜在生 态危害系数平均值都小于40,整体上表现为轻微生 态危害。土壤中6种重金属的潜在生态危害由强至弱 依次为 Cd>As>Cu>Pb>Cr>Zn。这一结果也说明焦岗湖 流域农田土壤主要污染元素为 Cd 和 As。

指数

Table 6 E_r^i and RI of heavy metals in soil

七左		污染指数						样品污染点个数			
1日7小	最小值	最大值	平均值	标准差	变异系数	轻微	中等	较强	很强		
$E^i_r(\mathrm{As})$	18.95	48.97	36.13	6.40	0.18	31	10	—	—		
$E^i_r(\operatorname{Cd})$	19.67	225.87	131.69	48.83	0.37	—	5	24	12		
$E^i_r(\operatorname{Cr})$	1.09	4.67	2.95	0.71	0.24	41	—	—	—		
$E_r^i(\operatorname{Cu})$	1.64	9.78	4.96	1.63	0.33	41	—	—	—		
$E_r^i(\operatorname{Pb})$	1.40	5.67	3.85	0.73	0.19	41	—	—	—		
$E_r^i(\operatorname{Zn})$	0.22	1.91	0.99	0.49	0.49	41	—	—	—		
RI	42.98	286.15	180.57	56.86	0.31	13	28	—	—		

从多元素角度综合分析,研究区潜在生态危害综合指数 RI 为 42.98~286.15,平均值为 180.57,整体上表现为中等生态危害,表现为轻微生态危害和中等生态危害的点位数分别占总点位数 31.70%和 68.30%。

潜在生态风险指数法评价结果表明,研究区生态 风险为中等生态危害程度,各元素的风险级别依次为 Cd>As>Cu>Pb>Cr>Zn;地累积指数法评价结果为Cd> As>Cu>Pb>Cr>Zn。比较分析可知,2种评价方法均认 为研究区农田土壤中元素Cd污染的生态风险值最 高,As的生态风险值次之,对其他4种元素的生态风 险评价结果则不一致,可能是由不同评价方法的特 点所决定。

地累积指数法在评价过程中通过重金属含量与 背景值的对比进行评价,主要反映重金属的富集程 度,Hakanson 潜在生态风险指数法不仅考虑了重金 属含量,而且在评价过程中考虑了各种重金属元素的 生物毒性。土壤是各类农作物的生长基质,是生物和 人类生存的重要载体,因此在进行生态风险评价时应 充分考虑重金属污染物的毒性效应^[17]。在实际运用当 中,将这两种方法结合使用能更加合理地对土壤重金 属污染状况进行评价,利于更加全面深入地了解研究 区域的重金属污染状况^[27]。

2.4 土壤重金属相关性分析

重金属之间的相关系数可以表明其来源途径的 相似性程度,相关系数较高的重金属之间具有依存关 系,可能有相似的来源途径;相关系数较低的重金属 之间则依存关系弱,来源途径不尽相同¹⁴⁴。由表7可 以看出,6种重金属两两之间在0.01置信水平上存在 显著正相关关系,表明研究区各重金属元素之间关系 密切,来源相近的可能性很大。

农田重金属来源非常广泛,除了受成土作用及工 业影响外,农业活动本身也会带入一定量的重金属进 入土壤^[12]。焦岗湖流域是皖北重要的农业生产区,该

Table 7 Correlation analysis for heavy metals in soil

元素	As	Cd	Cr	Cu	Pb
Cd	0.777**				
Cr	0.915**	0.713**			
Cu	0.835**	0.890**	0.811**		
Pb	0.836**	0.712**	0.889**	0.759**	
Zn	0.857**	0.641**	0.911**	0.781**	0.826**

注:** 表示在 0.01 水平上显著相关。

Note:** Indicates significance at 0.01 level.

流域内没有大型的工业企业,重金属来源于工业的可能性较小。研究表明,大量的化肥及农药(杀菌剂、除草剂)的使用会造成某些元素的累积,因为这些化学试剂在原材料或者生产过程中都或多或少会带入一些重金属^{[33};农业施用的磷肥、含磷复合肥及生活垃圾中均混杂有As、Cd、Cr、Cu、Pb和Zn等重金属^[26]。结合重金属的空间分布图及污染评价结果来看,焦岗湖流域的农田土壤Cd、As污染情况最为严重,农田土壤中的As和Cd的积累很可能源于化肥和农药的使用,故应通过合理施用化肥和农药等措施控制区域内农田土壤污染。

3 结论

(1)研究区土壤不同重金属元素含量差异较大, 除As外,重金属Cd、Cr、Cu、Pb和Zn含量最大值均 未超过土壤环境质量标准(GB15618—1995)二级标 准限定值,其中As、Cd、Cr平均含量高于研究区土壤 背景值,分别是对应背景值的3.61、4.39、1.48倍。重 金属元素的污染程度依次为As>Cd>Cr>Cu>Zn>Pb。

(2)空间分布分析表明,地表径流未对流域内重 金属的空间分布产生显著影响,研究区内重金属空间 分布上的差异可能主要与流域内不同区域工农业生 产活动所排放的重金属数量与强度有关。

(3)研究区土壤重金属地累积指数评价结果为无 污染-中等污染,潜在生态危害指数法评价结果为中 等生态危害水平,主要污染因子为 As 和 Cd。

(4)研究区土壤6种重金属的相关性分析表明研 究区各重金属元素之间关系密切,来源相同的可能性 很大,与研究区农业生产中化肥和农药的使用有关, 应通过合理施用化肥和农药等措施控制区域内农田 土壤污染。

参考文献:

[1] 余小芬,陈 军,彭荣珍,等. 滇中农用地土壤重金属影响因素研究[J]. 西南农业学报, 2012, 25(5):1765-1769.

YU Xiao-fen, CHEN Jun, PENG Rong-zhen, et al. Study on influencing factors of farmland soil heavy metals in Central Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2012, 25(5):1765–1769.

[2] 裴廷权, 王里奥, 包 亮, 等. 三峡库区小江流域土壤重金属的分布 特征与评价分析[J]. 土壤通报, 2010, 41(1): 206-211.

PEI Ting-quan, WANG Li-ao, BAO Liang, et al. Distribution characteristics and evaluation of soil heavy metals in water-level-fluctuating zone in Xiaojiang River[J]. *Chinese Journal of Soil Science*, 2010, 41 (1):206-211. [3] Wong C S C, Wu S C, Duzgoren-Aydin N S. Trace metal contamination of sediments in an e-waste processing village in China[J]. *Environmental Pollution*, 2006, 145(2):434–442.

- [4] 方晓波, 史 坚, 廖欣峰, 等. 临安市雷竹林土壤重金属污染特征及 生态风险评价[J]. 应用生态学报, 2015, 26(6):1883-1891.
 FANG Xiao-bo, SHI Jian, LIAO Xin-feng, et al. Heavy metal pollution characteristics and ecological risk analysis for soil in *Phyllostachys praecox* stands of Lin'an[J]. *Chinese Journal of Applied Ecology*, 2015, 26(6):1883-1891.
- [5] 郑国璋. 陕北黄土丘陵区农田土壤重金属污染及潜在生态风险评价[J]. 土壤通报, 2013, 44(6):1491-1495. ZHENG Guo-zhang. Evaluation of heavy metal contamination and its potential ecological risk to the farmland soils in Loess Hilly Area of North Shaanxi Province[J]. *Chinese Journal of Soil Science*, 2013, 44 (6):1491-1495.
- [6] 王 爽,李荣华,张增强,等.陕西潼关农田土壤及农作物重金属污染及潜在风险[J].中国环境科学,2014,34(9):2313-2320.
 WANG Shuang, LI Rong-hua, ZHANG Zeng-qiang, et al. Assessment of the heavy metal pollution and potential ecological hazardous in a-gricultural soils and crops of Tongguan, Shaanxi Province[J]. *China Environmental Science*, 2014, 34(9):2313-2320.
- [7] Olawoyin R, Oyewole S A, Grayson R L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta[J]. *Ecotoxicology and Environmental Safety*, 2012, 85(10): 120–130.
- [8] Khuzestani R B, Bubak S. Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran[J]. *Journal of Environmental Sciences*, 2013, 25(7):1346–1354.
- [9] Li Z Y, Ma Z W, Van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. *Science of the Total Environment*, 2014, 468–469(6):843–853.
- [10] 王 斌,张 震. 天津近郊农田土壤重金属污染特征及潜在生态风 险评价[J]. 中国环境监测, 2012, 28(3):23-27.
 WANG Bin, ZHANG Zhen. The features and potential ecological risk assessment of soil heavy metals in Tianjin suburban farmland[J]. Environmental Monitoring in China, 2012, 28(3):23-27.
- [11] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海:上海科学技术出版社, 1978.

Institute of Soil Science, Chinese Academy of Sciences. Analysis of soil physico-chemical properties[M]. Shanghai : Shanghai Science and Technology Press, 1978.

[12] 陈玉东, 王火焰, 周健民, 等. 黑龙江省海伦市农田土壤重金属分布特征及污染评价[J]. 土壤, 2012, 44(4):613-620.
CHEN Yu-dong, WANG Huo-yan, ZHOU Jian-min, et al. Heavy metals distribution characteristics and pollution assessment in farmland soils of Hailun City, Heilongjiang Province[J]. Soils, 2012, 44(4):613-620.

[13] 王 斐, 黄益宗, 王小玲, 等. 江西钨矿周边土壤重金属生态风险评价: 不同评价方法的比较[J]. 环境化学, 2015, 34(2):225-233.
WANG Fei, HUANG Yi-zong, WANG Xiao-ling, et al. Ecological risk assessment of heavy metals in surrounding soils of tungsten ores: Comparison of different evaluation methods[J]. Environmental Chemistry,

2015, 34(2): 225-233.

[14] 胡 明. 大荔县农田土壤重金属分布特征与污染评价[J]. 干旱区资源与环境, 2014, 28(1):79-84.

HU Ming. Distribution characteristics and pollution assessment for the farmland soil heavy metals in Dali county[J]. *Journal of Arid Land Resources and Environment*, 2014, 28(1):79–84.

[15]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.

LU Ru-kun. Analytical methods for soil agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.

[16] 郭笑笑, 刘丛强, 朱兆洲, 等. 土壤重金属污染评价方法[J]. 生态学 杂志, 2011, 30(5):889-896.

GUO Xiao-xiao, LIU Cong-qiang, ZHU Zhao-zhou, et al. Evaluation methods for soil heavy metals contamination[J]. *Chinese Journal of E-cology*, 2011, 30(5):889–896.

- [17] 于云江, 胡林凯, 杨 彦, 等. 典型流域农田土壤重金属污染特征及 生态风险评价[J]. 环境科学研究, 2010, 23(12): 1523-1527.
 YU Yun-jiang, HU Lin-kai, YANG Yan, et al. Pollution characteristics and ecological risk assessment of heavy metals in farmland soils of a typical basin[J]. *Research of Environmental Sciences*, 2010, 23(12): 1523-1527.
- [18] 刘 勇, 岳玲玲, 李晋昌. 太原市土壤重金属污染及其潜在生态风 险评价[J]. 环境科学学报, 2011, 31(6):1285-1293.
 LIU Yong, YUE Ling-ling, LI Jin-chang. Evaluation of heavy metal contamination and its potential ecological risk to the soil in Taiyuan, China[J]. Acta Scientiae Circumstantiae, 2011, 31(6):1285-1293.
- [19] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学 出版社, 1990:329-368.

China National Environmental Monitoring Centre. China's soil element background values[M]. Beijing: China Environmental Science Press, 1990:329–368.

- [20] Hakanson L. An ecological risk index for aquatic pollution control:A sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
- [21] 徐争启, 倪师军, 廣先国, 等. 潜在生态危害指数法评价中重金属毒 性系数计算[J]. 环境科学与技术, 2008, 31(2):112–115. XU Zheng-qi, NI Shi-jun, TUO Xian-guo, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2):112– 115.
- [22] Sznopek J L, Goonan T G. The materials flow of mercury in the economies of the United States and the world[R]. USA Geological Survey Circular 1197, 2000.

[23] 中华人民共和国环保部. GB 15618—1995 土壤环境质量标准[S]. 北京:中国标准出版社, 1995.
Minisiry of Environmental Protection of PRC. GB 15618—1995 Environmental quality standard for soils[S]. Beijing: China Standards Press, 1995.

[24] 谢小进,康建成,李卫江,等.上海宝山区农用土壤重金属分布与来源分析[J].环境科学,2010,31(3):768-774.
 XIE Xiao-jin, KANG Jian-cheng, LI Wei-jiang, et al. Analysis on

2310

2015年12月

韦绪好,等:焦岗湖流域农田土壤重金属污染及潜在生态风险评价

heavy metal concentrations in agricultural soils of Baoshan, Shanghai [J]. *Environmental Science*, 2010, 31(3):768–774.

[25] 柳云龙,章立佳,韩晓非,等.上海城市样带土壤重金属空间变异特征及污染评价[J].环境科学,2012,33(2):599-605. LIU Yun-long, ZHANG Li-jia, HAN Xiao-fei, et al. Spatial variability

and evaluation of soil heavy metal contamination in the urban-transect of Shanghai[J]. *Environmental Science*, 2012, 33(2):599–605.

- [26] 李一蒙,马建华,刘德新,等.开封城市土壤重金属污染及潜在生态风险评价[J].环境科学,2015,36(3):1037-1044.
 LI Yi-meng, MA Jian-hua, LIU De-xin, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 2015, 36(3):1037-1044.
- [27] 于 洋,高宏超,马俊花,等.密云县境内潮河流域土壤重金属分析 评价[J].环境科学,2013,34(9):3572-3577.

YU Yang, GAO Hong-chao, MA Jun-hua, et al. Analysis and evaluation of heavy metals along the Chaohe river in Miyun county[J]. *Environmental Science*, 2013, 34(9):3572–3577.

[28] 海米提·依米提, 祖皮艳木·买买提, 李建涛, 等. 焉耆盆地土壤重 金属的污染及潜在风险评价[J]. 中国环境科学, 2014, 34(6): 1523-1530.

HAMID Yimit, ZULPIYA Mamat, LI Jian-tao, et al. Sources explanation, pollution and assessment of potential ecological hazards of heavy metals in the soils of Yanqi basin, China[J]. *China Environmental Science*, 2014, 34(6):1523–1530.

[29] Yang P G, Mao R Z, Shao H B, et al. The spatial variability of heavy metal distribution in the suburban farmland of Taihang piedmont plain, China[J]. *Comptes Rendus Biologies*, 2009, 323(6):558–566. [30]汤国安,杨 昕. ArcGIS 地理信息系统空间分析实验教程[M]. 北京:科学出版社, 2006:39-61.
 TANG Guo-an, YANG Xin. ArcGIS geographic information system

spatial analysis experiment tutorial[M]. Beijing:Science Press, 2006: 39-61.

- [31] Atafar Z, Mesdaghinia A, Nouri J, et al. Effect of fertilizer application on soil heavy metal concentration[J]. *Environmental Monitoring and Assessment*, 2010, 160(1):83-89.
- [32] 淮南市统计局,国家统计局淮南调查队.淮南市 2014 年国民经济和社会发展统计公报[N].淮南日报,2015-03-23(4版).
 Huainan Municipal Bureau of Statistics, Survey Office of the National Bureau of Statistics in Huainan. Statistical bulletin for national economic and social development of Huainan city in 2014[N]. Huainan Daily, 2015-03-23(4).
- [33] 刘丽琼,魏世强,江 韬. 三峡库区消落带土壤重金属分布特征及 潜在风险评价[J]. 中国环境科学, 2011, 31(7):1204-1211. LIU Li-qiong, WEI Shi-qiang, JIANG Tao, et al. Distribution of soil heavy metals from water-level-fluctuating zone in Three-Gorge Reservoir Area and their evaluation of potential ecological risk[J]. China Environmental Science, 2011, 31(7):1204-1211.
- [34] Li Q S, Cai S S, Mo C H, et al. Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil[J]. *Environmental* Safety, 2010, 73(1):84-88.
- [35] Huang S S, Liao Q L, Hua M, et al. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China[J]. Chemosphere, 2007, 67(11):2148–2155.