大气 CO₂ 和 O₃ 浓度升高对淡水环境水化学条件的影响

胡正雪, 尹 颖, 艾弗逊, 郭红岩*

(南京大学环境学院 污染控制与资源化研究国家重点实验室,南京 210023)

摘 要:在开顶式气室 OTC(Open top chamber)平台下,构建微宇宙水环境模拟系统,初步研究了当大气 CO₂浓度升高 200 μL·L⁻¹、O₃ 浓度升高 50 nL·L⁻¹ 及其复合作用下,水体理化参数(pH、Eh、可溶态 Zn、Mg、Fe 以及可溶态总氮、总磷)、沉积物理化性质(pH、Eh、 Zn、Mg 和 Fe 的形态)的变化。经 5 个月的持续观察发现,与正常大气条件相比,CO₂ 升高(600±10)μL·L⁻¹,水体 pH 下降,可溶态 Zn、 Mg 浓度升高,可溶态总磷浓度无明显变化;O₃ 升高(125±20)nL·L⁻¹,水体 pH 无明显变化,可溶态 Zn、Mg、总磷浓度无明显变化;CO₂ 和 O₃ 复合升高[(600±10)μL·L⁻¹ CO₂,(125±20)nL·L⁻¹ O₃],水体 pH 下降,可溶态 Zn 浓度无明显变化,可溶态 Mg、总磷浓度升高。结 果表明:CO₂ 单独升高可降低水体 pH,促进沉积物对金属元素的释放;O₃ 单独升高对水体 pH、沉积物释放元素无明显影响;而 CO₂+O₃ 复合升高可降低水体 pH,促进沉积物对 Mg 和磷的释放。

关键词:CO₂; O₃; 复合效应; 水生生态系统

中图分类号:X131.2 文献标志码:A 文章编号:1672-2043(2014)11-2213-08 doi:10.11654/jaes.2014.11.020

Effects of Elevated CO_2 and O_3 on Environmental Chemical Properties in a Stimulated Micro-Aquatic Ecosystem

HU Zheng-xue, YIN Ying, AI Fu-xun, GUO Hong-yan

(State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China)

Abstract: In this study we investigated the responses of chemical properties in aquatic ecosystem to treatments with elevated CO_2 and O_3 in open top chamber(OTC) for 5 months. The physiochemical parameters of surface water(pH, Eh, soluble Zn, Mg, Fe, TN and TP) and sediments(pH, Eh, and percentages of Zn, Mg and Fe fractions) were measured. Elevated $CO_2[(600\pm10)\mu L\cdot L^{-1}]$ decreased pH, but increased soluble Zn and Mg concentrations in the surface water. Increasing CO_2 had no influence on soluble TP in the surface water. Elevated O_3 [(125±20)nL·L⁻¹] did not influence pH or concentrations of soluble Zn, Mg and TP in the surface water. Elevation of both CO_2 and $O_3[600\pm10)\mu L\cdot L^{-1}$ CO_2 , (125±20)nL·L⁻¹ O_3] decreased water pH, whereas increased soluble Mg and TP concentrations significantly. Soluble Zn was not influenced by elevated CO_2 and O_3 combination. These results indicate that elevated CO_2 decreases surface water pH but increases metal concentrations, while elevated O_3 has no significant influence on pH or element contents in water. Combination of elevated CO_2 and O_3 reduces pH and enhances Mg and phosphorus in surface water. Further studies are necessary to investigate the mechanisms under which future atmospheric conditions influence aquatic ecosystem especially under combined CO_2 and O_3 .

Keywords: elevated CO2; elevated O3; combined effects; aquatic ecosystem

据 IPCC 报道,大气 CO₂ 浓度已由工业化前的 280 μL·L⁻¹上升到 2007 年的超过 380 μL·L^{-1[1]}。大气 CO₂ 浓度升高可导致海水酸化^[2-3],影响碳酸钙、氮、磷 的生物地球化学动力学,改变海水中微量元素的存在 形态及生物可利用性^[4-5]。近年来由于矿质能源的消耗 和机动车辆增加,大气中氮氧化物、可挥发性有机物 含量增加,对流层中 O₃ 浓度呈增加趋势^[6],在我国经 济发达地区尤为严重^[7]。针对近地层 CO₂ 和 O₃ 浓度 协同升高的预测,国内外开展了不少有关大气 CO₂ 与 O₃ 复合效应对陆地生态系统影响的研究。邵在胜等^[8] 研究了大气 CO₂ 和 O₃ 浓度升高对汕优 63 光合作用 和稻米品质的影响,Kobayakawa 等^[9]发现高浓度 CO₂ 可缓解 O₃ 对水稻叶片光合作用的不利影响。CO₂ 和 O₃

收稿日期:2014-04-21

基金项目:国家自然科学基金(21177058)

作者简介:胡正雪(1990—),女,硕士研究生,从事气候变化条件下纳 米 ZnO 毒性研究。E-mail:hzx_4444@126.com

^{*}通信作者:郭红岩 E-mail:hyguo@nju.edu.cn

浓度升高通过改变植物群体组成、地下生态系统碳的 分配、土壤可溶性碳水化合物最终间接改变土壤化 学特征¹⁰⁰。但对淡水环境的影响,仅见孙曙光等¹¹¹报 道的大气 CO₂浓度升高影响水体 pH、Eh,影响砷对 羊角月牙藻和大型蚤的毒性作用。CO₂、O₃复合升高 对淡水环境的影响还未见报道。

可溶性总氮、总磷是浮游植物生长的主要限制因素,是湖泊富营养化的关键限制因子^[12]。微量金属元素,如Zn、Mg和Fe对浮游植物具有双重影响,既可以是其生长的限制性营养元素,当浓度超过一定阈值时又可能阻碍其光合作用和生长^[13-14]。微量元素是水环境条件的要素,是评估大气CO₂、O₃浓度升高对水环境影响的重要指标。

开顶式气室(OTC, Open top chamber)是一种广泛 应用于研究高浓度 CO₂ 及其他大气条件对生态系统 影响的实验平台^[15-16]。本文在 OTC 平台下构建微宇宙 水环境模拟系统,考察 CO₂、O₃ 升高及其复合升高条 件下淡水系统中水体 pH、Eh 以及微量元素的变化规 律以期获得未来大气条件对淡水生态系统化学环境 条件的影响。

1 材料与方法

1.1 试验平台

试验平台位于南京大学仙林校区,采用规格为 0.603 m²×1.8 m 的 OTC 平台,试验共设计 4 个气室。正 常大气对照(Amb):通入空气[CO₂: (400±10) μ L·L⁻¹, O₃: (75±20)nL·L⁻¹];CO₂ 升高(CO₂):通入与高纯度 CO₂ 混合后的空气 [CO₂: (600±10) μ L·L⁻¹,O₃: (75±20)nL· L⁻¹];O₃ 升高(O₃):通入与高纯度 O₃ 混合后的空气[CO₂: (400±10) μ L·L⁻¹,O₃: (125±20)nL·L⁻¹];CO₂ 与 O₃ 复 合升高(CO₂+O₃):通入与高纯度 CO₂ 和 O₃ 混合后的空 气[CO₂: (600±10) μ L·L⁻¹,O₃: (125±20)nL·L⁻¹]。

CO₂气体购自南京天泽气体有限公司,纯度为 99%;O₃由购自山东绿邦光电设备有限公司的NPF10/ W 臭氧发生器产生。CO₂和O₃经塑料气管在气体输出 端利用循环转动的风机充分混合后通入气室,保证气 室内 CO₂和O₃浓度均匀。每月用购自基因有限公司的 LI-7000 CO₂/H₂O 分析仪检测气室内的 CO₂浓度,每天 用购自北京宏昌信科技有限公司的美国 2B Model 205 臭氧检测仪检测气室内O₃浓度,并通过送气管上的分 压阀调节,维持气室内 CO₂、O₃浓度稳定在相应水平。

1.2 试验设计

每个气室中放入 3 个 30 cm×30 cm×50 cm 的水

箱。在每个水箱中缓慢铺上 10 cm 厚的采自南京大学 校园内天籁湖的底泥,加入 27 L 自来水,保持水面距 箱底 40 cm 的高度。试验从 2012 年 4 月至 2012 年 8 月,为期 5 个月。

1.3 测定内容及方法

1.3.1 pH、Eh 的测定

试验系统稳定运行一周,自2012年5月1日起, 用 Thermo Scientific Orion 5-Star 台式 pH/ORP/ISE/ Cond/DO 多参数测量仪每周两次,在每天的同一时间 测量表层水 pH、Eh 值。自6月11日起同时监测沉积 物的 pH、Eh 值。

1.3.2 表层水中可溶性元素的测定

每周取 100 mL 表层水样,过 0.45 µm 滤膜,将滤 液分成两份,向其中一份中加入 1%HNO₃,置于 4 ℃ 冰箱保存。使用 ICP-MS(Optima 5300DV)测定滤液中 的微量金属元素。另一份滤液分别用钼锑抗分光光度 法和过硫酸钾氧化紫外分光光度法测可溶性总氮和 可溶性总磷^[17]。

1.3.3 沉积物中金属元素形态分析

采用 BCR 分步提取法测定沉积物中金属元素的 弱酸可提态、还原态、氧化态和残渣态^[18]。所有浓度均 由 ICP-MS(Optima 5300DV)测量获得。

1.4 数据分析

采用 Excel 进行数据计算与作图。在 SPSS 16.0 中选用 Ducan 法检验差异显著性,显著性水平为 P< 0.05。

2 结果与分析

2.1 表层水和沉积物中 pH 和 Eh 变化

各处理组表层水和沉积物 pH、Eh 随时间变化情况如图 1~图 4 所示, CO₂ 升高、O₃ 升高及复合升高对表层水及沉积物 pH、Eh 总体水平影响的统计结果见表 1。CO₂ 升高,表层水 pH 显著下降(P<0.05);CO₂+O₃ 复合升高,表层水 pH 无明显变化(P>0.05);CO₂+O₃ 复合升高,表层水 pH 显著下降(P<0.05)。CO₂和O₃ 浓度升高对表层水的 Eh 以及沉积物的 pH 和 Eh 无显著影响(P>0.05)。

2.2 表层水中可溶性元素含量

由图 5 可知,CO₂升高、O₃升高及复合升高均对 可溶性元素浓度产生一定影响,但表层水中可溶性 Zn、Mg、Fe、总氮、总磷的浓度随时间波动较大。可溶性 元素平均含量如表 2 所示:CO₂升高,可溶性 Zn 浓度 显著增加(P<0.05);O₃升高,可溶性 Zn 浓度无显著变

Each data point is mean \pm standard deviation; Each gas treatment replicates 3 times(n=3)

图 1 正常大气、 CO_2 升高、 O_3 升高及 CO_2+O_3 复合升高处理下水体 pH 随时间变化趋势

Figure 1 Changes of pH in surface water over time under ambient air, elevated CO₂, elevated O₃ and elevated CO₂+O₃ Conditions

图 2 正常大气、CO₂升高、O₃升高及 CO₂+O₃ 复合升高处理下水体 Eh 随时间变化趋势 Figure 2 Changes of Eh in surface water over time under ambient, elevated CO₂, elevated O₃ and elevated CO₂+O₃ conditions

Figure 3 Changes of pH in sediment over time under ambient, elevated CO2, elevated O3 and elevated CO2+O3 conditions

随机选择各处理组中的一个水箱,测其沉积物 Eh

The sediment Eh was measured in one tank randomly selected from each gas treatment

图 4 正常大气、CO₂升高、O₃升高及 CO₂+O₃复合升高处理下沉积物 Eh 随时间变化趋势

Figure 4 Change of Eh in sedimentover time under ambient, elevated CO₂, elevated O₃ and elevated CO₂+O₃ conditions

表 1 正常大气、CO2 升高、O3 升高及 CO2+O3 复合升高处理下表层水及沉积物 pH、Eh 总体变化趋势

Table 1 pH and Eh in surface water and sediments under ambient, elevated CO₂, elevated O₃ and elevated CO₂+O₃ conditions

项目	正常大气 Ambient	CO2升高 Elevated CO2	O3 升高 Elevated O3	CO ₂ +O ₃ 复合升高 Elevated CO ₂ +O ₃
表层水 pH Surface water pH(n=102)	$9.78 \pm 0.40 \mathrm{b}$	9.50±0.39a	$9.79 \pm 0.43 \mathrm{b}$	9.55±0.40a
表层水 Eh Surface water Eh/mV(n=102)	223.56±62.28a	221.58±62.76a	210.06±61.25a	216.82±60.94a
沉积物 pH Sediment pH(n=22)	7.44±0.37ab	7.31±0.12a	7.53±0.30b	7.31±0.16a
沉积物 Eh Sediment Eh/mV(n=22)	-129.03±45.62a	-135.43±51.08a	-137.88±50.84a	-135.50±48.11a

注:数据表示为平均值±标准偏差;同行不同字母表示差异显著(P<0.05)。下同。

Note: Data is expressed as mean±standard deviation; Different letters in the same row represent significant difference(P<0.05). The same below.

化(P>0.05);CO₂+O₃复合升高,可溶性 Zn 浓度相比 于正常大气对照也没有显著差异(P>0.05)。CO₂升高, 可溶性 Mg 浓度显著增加(P<0.05);O₃升高对可溶性 Mg 浓度无显著影响(P>0.05);而二者复合升高,可溶 性 Mg 浓度显著增加(P<0.05)。CO₂和 O₃升高对可溶 性 Fe 和总氮含量无明显影响(P>0.05)。CO₂和 O₃单 独升高对可溶性总磷的浓度无明显影响(P>0.05),而 当两者复合升高时,可溶性总磷浓度显著增加(P< 0.05)。

2.3 沉积物中 Zn、Mg 和 Fe 元素的形态分布

图 6 表明沉积物中 Zn、Mg 和 Fe 都主要以残渣 态存在。CO₂升高,Zn 的还原态较正常大气下增加了 约46%(P<0.05);CO₂升高、O₃升高及 CO₂+O₃复合升 高都能导致氧化态 Zn 所占比例下降(P<0.05)。CO₂ 升高,Mg 的弱酸可提取态含量增加了约 2 mg·kg⁻¹ (P<0.05);各处理组中还原态和氧化态 Mg 含量均无 明显变化(P>0.05)。各处理组中弱酸可提取态 Fe 含 量无明显差异 (P>0.05);CO₂升高、O₃升高及 CO₂+O₃ 复合升高条件下还原态 Fe 含量下降(P<0.05)。

3 讨论

CO₂浓度升高打破水体碳酸盐化学平衡,水体中 H⁺和 HCO₃浓度增加,CO²3浓度减少,pH 下降。水体质 子转移的同时也伴随着电子的迁移,从而影响水体的 氧化还原电位^[11]。然而在本试验中,未能检测到 CO₂ 和 O₃ 升高对水体 Eh 的影响。这可能是因为天然水体 是一个相当复杂的体系,其氧化还原电位是多个氧化 物质和还原物质发生氧化还原反应的综合结果,水体 中的溶解氧、pH、硬度、碱度、硫酸盐、硅酸盐、Fe、Mn 等元素以及有机质都是影响 Eh 的因素^[19-21]。未来大 气条件下水体 Eh 会如何变化仍需进一步研究。

沉积物释放元素受 pH、微生物、溶解氧、温度等 多种因素的影响^[22-25]。pH 对沉积物中重金属元素的释 放有很大影响,pH 的下降可以使碳酸盐和氢氧化物 溶解,而且 H*的竞争吸附作用也可以增加重金属离 子的释放量;同时,pH 的降低能使重金属溶解度明显 增加^[26]。

朱广伟^[22]在研究沉积物释放 Zn 的规律时发现,

图 5 正常大气、 CO_2 升高、 O_3 升高及 CO_2+O_3 复合升高处理下表层水中可溶性 Zn(a)、可溶性 Mg(b)、 可溶性 Fe(c)、可溶性总氮(d)、可溶性总磷(e)浓度随时间变化趋势

Figure 5 Concentrations of soluble Zn(a), soluble Mg(b), soluble Fe(c), soluble TN(d) and soluble TP(e)in surface water under ambient, elevated CO_2 , elevated O_3 and elevated CO_2+O_3 conditions

表 2 正常大气、CO₂升高、O₃升高及 CO₂+O₃复合升高处理下表层水中可溶性 Zn、Mg、Fe、总氮、总磷平均浓度(mg·L⁻¹, n=36)

Table 2 Average concentrations of soluble Zn, Mg, Fe, TN and TP in surface waterunder ambient, elevated CO₂,

elevated O_3 and elevated $\mathrm{CO}_2\text{+}\mathrm{O}_3 \operatorname{conditions}(\operatorname{mg}\boldsymbol{\cdot} L^{\text{-}1})$

项目	正常大气 Ambient	CO2升高 Elevated CO2	O ₃ 升高 Elevated O ₃	CO2+O3 复合升高 Elevated CO2+O3
可溶性 Zn Soluble Zn	0.014±0.007a	$0.018{\pm}0.006\mathrm{b}$	$0.015{\pm}0.007{\rm ab}$	0.016±0.006ab
可溶性 Mg Soluble Mg	3.962±2.869a	5.842 ± 3.256 b	4.537±1.838a	$5.745 \pm 1.900 \mathrm{b}$
可溶性 Fe Soluble Fe	0.025±0.017a	0.035±0.045a	0.041±0.034a	$0.044 \pm 0.056 a$
可溶性总氮 Soluble TN	1.632±0.877a	1.414±0.680a	1.621±0.643a	1.507±0.540a
可溶性总磷 Soluble TP	0.079±0.044a	0.070±0.043a	0.069±0.030a	$0.111 \pm 0.055 b$

沉积物中 pH 值下降导致沉积物向上覆水释放 Zn 的量增加。在本研究中 CO₂ 升高条件下水体 pH 下降,

还原态 Zn 所占比例增加,可能导致沉积物向水体中释放 Zn 的量增加,进而增加可溶态 Zn 浓度。CO₂+O₃

图 6 正常大气、CO₂ 升高、O₃ 升高及 CO₂+O₃ 复合升高处理 5 个月后沉积物中 Zn(a)、Mg(b)和 Fe(c)不同形态所占比例 Figure 6 Percentages of Zn(a), Mg(b) and Fe(c) fractions in sediments exposed to ambient, elevated CO₂, elevated O₃ and elevated CO₂+O₃ conditions for 5 months

复合升高条件下表层水 pH 下降,但可溶态 Zn 浓度 无明显变化。其可能原因有:CO₂+O₃复合升高处理组 沉积物中弱酸可提取态和还原态 Zn 的含量无明显变 化;Fe³⁺也能够影响 Zn 的释放,Fe³⁺在水体中很容易形 成 Fe(OH)₃类聚合胶体,带大量负电荷,能够吸附水 体和沉积物中的金属离子从而减少沉积物中重金属 的释放,降低水体中可溶性金属的浓度^[22]。虽未检测 到显著性差异,但 CO₂+O₃处理组可溶性 Fe 浓度平均 值要高于正常大气对照组,使得 Fe(OH)₃类聚合胶 体吸附 Zn 的量增加。

徐畅等^四发现,pH 值降低导致土壤中可溶性 Mg

农业环境科学学报 第 33 卷第 11 期

浓度增加, Mg 的生物可利用性增大。本研究也有类似 发现, CO₂ 升高导致沉积物中弱酸可提态 Mg 含量增加, 水体中可溶性 Mg 浓度增加。O₃ 升高对沉积物中 Mg 的形态及水体中可溶性 Mg 的浓度均无明显影 响。而 CO₂+O₃ 作用下可溶性 Mg 含量显著增加, 可能 是因为复合效应下水体 pH 下降, 促进了沉积物中 Mg 的释放。然而本文中并未检测到 CO₂+O₃ 复合升高 对沉积物中 Mg 的形态有显著影响, 故对其释放机制 尚不十分了解, 有待进一步研究。

本试验中 CO₂升高和 CO₂+O₃复合升高条件下水体 pH 下降,但是可溶性 Fe 的浓度并未显著改变。其可能原因有:尽管 CO₂升高及 CO₂+O₃复合升高导致水体 pH 下降,但是总体各处理组水溶液均呈碱性,释放出来的 Fe²⁺、Fe³⁺易与环境中的 OH-结合,生成 Fe(OH)₂、Fe(OH)₃沉淀,难以向表层水扩散,可能导致各处理组释放到水体中的 Fe 浓度较低,且差异性不显著;Fe 的释放还受到微生物、溶解氧、温度等其他因素的影响^[23],且 Fe 是浮游植物生长的必需微量元素,在浮游植物氮的吸收固定、叶绿素合成、光合作用等过程中发挥着重要作用^[28]。在本试验中,观察到大量水绵周期性生长,水绵在生长过程中吸收、利用水体中的 Fe 元素,随着其生长周期的变化,吸收Fe 元素的量也发生改变,影响水体中可溶性 Fe 的浓度,导致各处理组可溶性 Fe 的差异性进一步缩小。

本研究中,CO₂及O₃升高对可溶性总氮的浓度 没有显著的影响。林华实^[5]的研究也发现在碱性条件 下,pH的变化对氮的释放没有明显影响。

王新建等^{[29}的研究发现,在碱性条件下 OH⁻与被 束缚的磷酸盐阴离子产生竞争吸附,导致释磷量随 pH 的上升而增加。在本试验中 CO₂和 O₃ 单独升高均 未能明显地影响沉积物对 P 的释放,而 CO₂和 O₃ 复 合升高使磷的释放量显著增加。其可能原因是沉积物 释放磷还受温度、溶解氧以及生物因素的影响^[24],从 而导致不同研究对象在不同环境条件下的释放情况 不尽相同。因此,仍需要进行深入研究探索沉积物中 元素释放的机制,建立模型以模拟未来大气条件下沉 积物中元素的释放情况。

CO₂和O₃的复合效应与CO₂、O₃单独升高对水 化学环境的影响存在显著差异,且水体理化性质的改 变对浮游植物的生长产生一定影响。目前的结果尚不 能说明大气CO₂、O₃浓度升高及其复合效应对水生生 物会产生怎样的影响。未来应从水化学、水生生物等 角度系统地研究复合大气环境条件变化对水生态系 统的影响及其机制。

4 结论

CO₂单独升高导致水体 pH下降,可溶态 Zn、Mg 浓度上升;O₃单独升高对水体 pH、可溶态金属及总 磷浓度无显著影响;复合效应与 CO₂、O₃单独升高对 水化学环境的影响存在显著差异。复合条件下水体 pH下降,可溶态 Zn 浓度无明显变化,可溶态 Mg 浓 度显著增加;且复合效应增加沉积物的释磷量,导致 可溶态总磷浓度显著高于 CO₂和 O₃单独升高组。 CO₂、O₃升高及其复合效应随着对水环境化学条件的 改变将可能影响到淡水环境初级生产力的变化,进而 影响整个淡水生态系统。目前的模拟试验为开展复合 效应对水环境影响研究的必要性提供了一些依据,然 而本试验系统稳定性欠佳,不利于进行机理研究。未 来应建立更加精密的模拟系统,进行更为长期和深入 的试验,以研究大气条件变化对水环境影响的机制。

参考文献:

- Solomon S. Climate change 2007 the physical science basis: Working group I contribution to the fourth assessment report of the IPCC [M]. Cambridge: Cambridge University Press, 2007:501–533.
- [2] Waters J F, Millero F J, Sabine C L. Changes in south pacific anthropogenic carbon[J]. *Global Biogeochemical Cycles*, 2011, 25(4). DOI:10. 1029/2010GB003988.
- [3] Raven J, Caldeira K, Elderfield H, et al. Ocean acidification due to increasing atmospheric carbon dioxide[M]. London: The Royal Society, 2005;5–14.
- [4] Lacoue-labarthe T, Réveillac E, Oberhänsli F, et al. Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo Vulgaris[J]. A quatic Toxicology, 2011, 105(1):166–176.
- [5] Doney S C, Fabry V J, Feely R A, et al. Ocean acidification: The other CO₂ problem[J]. *Marine Science*, 2009(1):169–192.
- [6] 伍 文, 黄益宗, 李明顺, 等. O₃ 浓度升高对麦田土壤氨氧化细菌, 氨氧化古菌和硝化细菌数量的影响[J]. 农业环境科学学报, 2012, 31(3):491-497.

WU Wen, HUANG Yi-zong, LI Ming-shun, et al. Effects of elevated ozone on quantity of ammonium-oxidizing bacteria, ammonia-oxidizing achaea and nitrobacteria in wheat field soil[J]. *Journal of Agro-Environment Science*, 2012, 31(3):491–497

- [7] 尹微琴,张贤臣,王小治,等. O₃浓度升高对麦季土壤-植株系统中 微量元素的影响[J].农业环境科学学报,2012,31(11):2094-2100. YIN Wei-qin, ZHANG Xian-chen, WANG Xiao-zhi, et al. Effect of O₃ enrichment on DTPA-extractable microelements in soil and accumulation of microelements of mature crops in the wheat season[J]. Journal of Agro-Environment Science, 2012, 31(11):2094-2100.
- [8] 邵在胜, 赵轶鹏, 宋琪玲, 等. 大气 CO₂和O₃浓度升高对水稻汕优 63 叶片光合作用的影响[J]. 中国生态农业科学, 2014, 22(4):422-

429.

SHAO Zai-sheng, ZHAO Yi-peng, SONG Qi-ling, et al. Impact of elevated atmospheric carbon dioxide and ozone concentrations on leaf photosynthesis of Shanyou 63 hybrid rice[J]. *Chinese Journal of Eco-Agriculture*, 2014, 22(4):422-429

- [9] Kobayakawa H, Imai K. Effects of the interaction between ozone and carbon dioxide on gas exchange, photosystem II and antioxidants in rice leaves[J]. *Photosynthetica*, 2011, 49(2):227–238.
- [10] 房 蕊, 鲁彩艳, 史 奕. CO₂和O₃浓度升高对土壤碳水化合物累积分布特征的影响[J]. 农业环境科学学报, 2010, 29(增刊):285-288.

FANG Rui, LU Cai–yan, SHI Yi. A review: Effects of elevated CO₂ and O₃ on accumulation and distribution characteristics of soil carbohy – drate[J]. *Journal of A gro–Environment Science*, 2010, 29(Suppl): 285–288.

- [11] 孙曙光, 尹 颖, 郭红岩. 大气 CO₂ 浓度升高对砷污染水体生态风险的影响[J]. 南京大学学报(自然科学版), 2013, 49(3):387-393.
 SUN Shu-guang, YIN Ying, GUO Hong-yan. Elevated CO₂ levels affects the ecological risk of arsenic pollution water[J]. *Journal of Nanjing University(Natural Science*), 2013, 49(3):387-393.
- [12] XU H, Pearl H W, Qin B, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic lake Taihu, China[J]. *Limnology and Oceanography*, 2010, 55(1):420.
- [13] Atli G, Canli M. Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal(Cd, Cu, Cr, Zn, Fe) exposures[J]. Ecotoxicology and Environmental Safety, 2010, 73(8): 1884–1889.
- [14] Spencer D F, Greene R W, Theis T L, et al. A Study of the relationship between phytoplankton abundance and trace metal concentrations in eutrophic lake Charles East, using correlation techniques[C]//Proceedings of the Indiana Academy of Science, 1977:204–212.
- [15] Sarkar A, Agrawal S B. Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers[J]. *Journal of Environmental Management*, 2012, 95(Suppl): 19–24.
- [16] Henry H A L. Soil extracellular enzyme dynamics in a changing climate[J]. Soil Biology and Biochemistry, 2012, 47:53–59.
- [17] 国家环境保护总局.水和废水监测分析方法[M].四版.北京:中国 环境科学出版社,2002:243-257.
 State Environmental Protection Administration. Methods for the monitoring and analysis of water and wastewater[M]. 4th Edition. Beijing: China Environmental Science Press, 2002:243-257.
- [18] 章海波, 骆永明, 赵其国, 等. 香港土壤研究 Ⅲ. BCR 提取法研究重 金属的形态及其潜在环境风险[J]. 土壤学报, 2010(5):865-871. ZHANG Hai-bo, LUO Yong-ming, ZHAO Qi-guo, et al. Hong Kong soil researches Ⅲ: Research on fractions of heavy metals and their potential environmental risks in soil based on BCR sequential extraction[J]. Acta Pedologica Sinica, 2010(5):865-871.
- [19] 吴金浩,刘桂英,王年斌,等. 辽东湾北部海域表层沉积物氧化还原 电位及其主要影响因素[J]. 沉积学报, 2012, 30(2):333-339.
 WU Jin-hao, LIU Gui-ying, WANG Nian-bin, et al. The Eh in surface

2220

sediments in the northern of Liaodong bay and its main influencing factors[J]. *Acta Pedologica Sinica*, 2012, 30(2):333–339. [25] 7

[20] 王 媛,李铁龙,刘大喜,等.电位测定法测海水氧化还原电位的 不确定度评定[J].海洋技术,2012,31(1):123-126.

WANG Yuan, LI Tie-long, LIU Da-xi, et al. Uncertainty evaluation of the oxidation-reduction potentials of sea water using the potentiometric method[J]. *Ocean Technology*, 2012, 31(1):123–126.

[21] 黄少远,张 华,岑琼军,等. 养殖水体提高氧化还原电位的方法[J]. 科学养鱼,2013(11):87-87.

HUANG Shao-yuan, ZHANG Hua, CEN Qiong-jun, et al. The methods for increase the Eh of aquaculture water[J]. *Scientific Fish Farming*, 2013(11):87–87.

[22] 朱广伟. 运河(杭州段)沉积物污染特征、释放规律及其环境效应的研究[D]. 杭州:浙江大学, 2001:64-84.

ZHU Guang-wei. Pollution characteristics of the sediment of the Hangzhou section of the Grand Canal, China, and its pollution releasing mechanism and ecological effects [D]. Hangzhou: Zhejiang University, 2001;64–84.

[23] 于海涛,潘伟斌,侯晓辉.供水水库沉积物中铁锰的释放规律研究[J]. 工业安全与环保,2012(4):72-75.

YU Hai-tao, PAN Wei-bin, HOU Xiao-hui. Study on release of iron and manganese from sediments in a water-supply reservoir[J]. *Industrial Safety and Dust Control*, 2012(4):72–75.

[24] 朱梦圆, 朱广伟, 王永平. 太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J]. 环境科学, 2011(2):409-415.

ZHU Meng-yuan, ZHU Guang-wei, WANG Yong-ping. Influence of scum of algal bloom on the release of N and P from sediments of Lake

Taihu[J]. Environmental Science, 2011(2):409–415.

[25] 林华实. 水体沉积物中的氮磷释放规律研究[D]. 广州:广东工业大学, 2011:16-27.

LIN Hua-shi. The research of release law of nitrogen and phosphorus in sediment[D]. Guangzhou: Guangdong University of Technology, 2011:16-27.

[26] 李 鹏. 霞湾港底泥中锌和铅释放特性的研究[D]. 长沙:湖南大学, 2011:42-52.

LI Peng. Study on release of zinc and lead in sediment of Xiawan[D]. Changsha: Hunan University, 2011:42–52.

[27] 徐 畅,高 明. 土壤中镁的化学行为及生物有效性研究进展[J]. 微量元素与健康研究,2007(5):51-54.

XU Chang, GAO Ming. The development of research about transformation and boiavailability of magnesium in soil[J]. *Studies of Trace Elements and Health*, 2007(5):51–54.

- [28] 姚 波, 席北斗, 胡春明, 等. 铁限制对浮游植物生长和群落组成的影响研究综述[J]. 生态环境学报, 2010(2):459-465.
 YAO Bo, XI Bei-dou, HU Chun-ming, et al. Influence of iron limitation on phytoplankton growth and community composition: A review[J]. *Ecology and Environmental Sciences*, 2010(2):459-465.
- [29] 王新建, 王松波, 耿 红. 东湖、汤逊湖和梁子湖沉积物磷形态及 pH 对磷释放的影响[J]. 生态环境学报, 2013, 22(5):810-814. WANG Xin-jian, WANG Song-bo, GENG Hong. Phosphorus fractions and the influence of pH on the release of phosphorus from sediments in the Donghu Lake, Tangxun Lake and Liangzi Lake[J]. Ecology and Environmental Sciences, 2013, 22(5):810-814.

金属矿山尾矿钝化技术与原理

本书是一本关于金属矿山尾矿钝化研究的成果专著。全书共6章,在简 单介绍矿山尾矿的分类与化学组成、尾矿的环境影响、尾矿的综合利用与处理 技术的基础上,系统总结作者所在研究团队十多年来对金属矿山尾矿中金属 硫化物的化学及生物氧化机理、钝化剂的筛选与合成以及钝化机理方面的研 究成果。这些研究成果是从源头控制酸性矿山废水产生、防治金属硫化物矿 区环境污染的重要依据。

本书由科学出版社出版,党志,刘云,卢桂宁,等著。定价78.00元。可供地 球化学、环境科学、矿业工程等学科的研究人员,国土资源、矿产资源、环境保 护等部门的工程技术与管理人员,以及高等院校相关专业的师生参考。