文章摘要
林冰峰,陈志豪,杨芳俐,吴永红,唐次来.锰铁氧体改性生物炭对四环素的吸附性能研究[J].农业环境科学学报,2023,42(7):1585-1596.
锰铁氧体改性生物炭对四环素的吸附性能研究
Adsorption performance of tetracycline by manganese ferrite-modified biochar
投稿时间:2022-11-29  
DOI:10.11654/jaes.2022-1222
中文关键词: 生物炭  锰铁氧体  表面改性  吸附动力学  四环素
英文关键词: biochar  manganese ferrite  surface modification  adsorption kinetics  tetracycline
基金项目:国家自然科学基金项目(21876097)
作者单位E-mail
林冰峰 三峡大学水利与环境学院, 湖北 宜昌 443002
三峡大学三峡库区生态环境教育部工程研究中心, 湖北 宜昌 443002 
 
陈志豪 三峡大学水利与环境学院, 湖北 宜昌 443002
三峡大学三峡库区生态环境教育部工程研究中心, 湖北 宜昌 443002 
 
杨芳俐 三峡大学水利与环境学院, 湖北 宜昌 443002
三峡大学三峡库区生态环境教育部工程研究中心, 湖北 宜昌 443002 
 
吴永红 三峡大学水利与环境学院, 湖北 宜昌 443002
中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室, 南京 210008 
 
唐次来 三峡大学水利与环境学院, 湖北 宜昌 443002
三峡大学三峡库区生态环境教育部工程研究中心, 湖北 宜昌 443002 
bolong8111@163.com 
摘要点击次数: 816
全文下载次数: 668
中文摘要:
      为了提高生物炭对四环素(TC)的吸附效果,通过共沉淀和热解法制备了锰铁氧体改性的橘子皮生物炭(BC@MnFe2O4),采用 SEM、BET、XRD、FT-IR 和 XPS 对不同生物炭进行表征分析。通过批处理实验研究了初始 pH、生物炭用量、TC 浓度、共存离子对 BC@MnFe2O4吸附 TC 的影响。结果表明,锰铁氧体可均匀负载到生物炭表面。相比于原始生物炭,BC@MnFe2O4具有更丰富的孔隙结构,比表面积由改性前的2.86 m2·g-1,提高到306.12 m2·g-1。FT-IR结果显示BC@MnFe2O4表面存在—OH、—Mn—O、—Fe—O官能团。BC@MnFe2O4对TC的最大吸附量可达167.50 mg·g-1,是原始生物炭(13.21 mg·g-1)的12倍。吸附过程符合准二级动力学方程和Freundlich等温吸附方程。吸附机制以化学吸附为主,多层吸附占主导。BC@MnFe2O4拓宽了pH的适用范围,随着pH从3提高到11,吸附效率逐渐降低,但在pH=11时,去除效率仍有80%。共存的NO-3和SO2-4对BC@MnFe2O4吸附TC的影响不显著,随NH+4浓度增加,TC吸附量略提升了5.44 mg·g-1。而腐植酸由于与TC竞争吸附点位,明显抑制了TC的吸附。BC@MnFe2O4在循环使用5次后仍能保持61.65%的吸附量,有良好的应用潜能。XPS分析表明,Mn—O和Fe—O等含氧官能团对TC的吸附起主要作用,吸附后Mn和Fe元素的化合价上升,以及官能团的改变,说明改性生物炭与TC发生了电子转移,形成了共价键。研究表明,锰铁氧体改性显著提高了生物炭对四环素的吸附能力,在较宽的pH范围内仍有良好的吸附效果,且受水溶液中共存离子的干扰小。
英文摘要:
      To improve the adsorption effect of tetracycline(TC)by biochar, manganese ferrite was used to modify orange peel biochar. Manganese ferrite-modified orange peel biochar(BC@MnFe2O4)was prepared by co-precipitation and pyrolysis, and the materials were characterized using SEM, BET, XRD, FT-IR, and XPS. The effects of initial pH, biochar dosage, TC concentration, and coexisting ions on TC sorption by BC@MnFe2O4 were investigated via batch experiments. The results showed that the manganese ferrite uniformly coated the surface of biochar. Compared with the raw biochar, the BC@MnFe2O4 had a richer pore structure, and the specific surface area was increased from 2.86 m2·g-1 to 306.12 m2·g-1 after modification. The results of FT-IR implied the presence of —OH,—Mn—O, and —Fe—O functional groups on the surface of BC@MnFe2O4. The maximum adsorption capacity of TC by BC@MnFe2O4 was 167.50 mg·g-1, which is 12 times than that of raw biochar(13.21 mg·g-1). The adsorption process was consistent with the quasi-secondary kinetic equation and the Freundlich isothermal adsorption model. The adsorption mechanism was mainly chemical adsorption with multi-layer adsorption. BC@MnFe2O4 broadened the pH scope of application. As the pH increased from 3 to 11, the adsorption efficiency gradually decreased, but at pH 11, the removal efficiency was still 80%. The presence of NO -3 and SO2-4 in the solution had no significant effect on the adsorption of TC by BC@MnFe2O4, and the adsorption capacity of TC increased slightly by 5.44 mg·g-1 with the increase of NH+4. However, humic acid significantly inhibited the adsorption of TC due to the competition with TC for adsorption points. BC@MnFe2O4 still achieved 61.65% adsorption capacity after 5 cycling runs, with good application potential. XPS analysis showed that oxygen-containing functional groups such as Mn—O and Fe—O played a major role in the adsorption of TC, and the valence of Mn and Fe elements increased after sorption, as well as the change of functional groups, indicating that the modified biochar and TC underwent electron transfer and formed covalent bonds. It implies that manganese ferrite modification significantly improves the adsorption capacity of TC by BC@MnFe2O4, has a good adsorption effect in a wide pH range, and is less disrupted by coexisting ions in an aqueous solution.
HTML    查看全文   查看/发表评论  下载PDF阅读器