文章摘要
吴沣槭,黄伟斌,陈家乐,韩迎春,冯璐,王国平,李小飞,李亚兵,王占彪.中国棉花生产碳排放核算与碳达峰预测[J].农业环境科学学报,2023,42(3):692-704.
中国棉花生产碳排放核算与碳达峰预测
Carbon emission accounting and carbon peak prediction for cotton production in China
投稿时间:2022-05-10  
DOI:10.11654/jaes.2022-0477
中文关键词: 棉花生产|碳排放|碳达峰|生命周期评价|STIRPAT模型|碳中和
英文关键词: cotton production|carbon emission|carbon emission peak|life cycle assessment|STIRPAT model|carbon neutral
基金项目:国家重点研发计划项目(2020YFD1001000);国家自然科学基金项目(31701389)
作者单位E-mail
吴沣槭 棉花生物学国家重点实验室郑州科研中心/郑州大学农学院, 郑州 450000  
黄伟斌 棉花生物学国家重点实验室郑州科研中心/郑州大学农学院, 郑州 450000  
陈家乐 中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南安阳 455000  
韩迎春 中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南安阳 455000  
冯璐 棉花生物学国家重点实验室郑州科研中心/郑州大学农学院, 郑州 450000
中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南安阳 455000 
 
王国平 中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南安阳 455000  
李小飞 中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南安阳 455000  
李亚兵 棉花生物学国家重点实验室郑州科研中心/郑州大学农学院, 郑州 450000
中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南安阳 455000 
criliyabing@163.com 
王占彪 棉花生物学国家重点实验室郑州科研中心/郑州大学农学院, 郑州 450000
中国农业科学院棉花研究所/棉花生物学国家重点实验室, 河南安阳 455000 
wangzhanbiao@caas.cn 
摘要点击次数: 1146
全文下载次数: 1167
中文摘要:
      为预测碳达峰时间和峰值,综合分析减排潜力,本研究使用生命周期评价法对2004—2018年棉花生产碳排放进行核算,基于STIRPAT模型进行模拟,结合Kaya恒等式确定模型变量为技术效率、生产规模、进口数量、农业经济和城镇化率,通过岭回归确定系数将2019—2035年碳排放情景分为高减排度情景(HERS)、中等减排度情景(MERS)、基准情景(BS)3类进行变量设定和预测。结果表明:2004—2018年中国棉花生产碳排放及其增长率呈缓慢上升趋势,2018年碳排放达到最高值(24.34万t),新疆的碳排放值最大(2018年占比86.8%)并呈明显增加的趋势,肥料生产与施用、灌溉用电、农膜是生产过程中的主要碳排放构成因素。用于模拟中国棉花生产碳排放的STIRPAT模型性能良好(R2=0.866,adjusted R2=0.792,P=0.001),自变量均对因变量有显著影响(P<0.01),生产规模、城镇化率和技术效率是主要宏观影响因素。结果显示2019—2035年HERS、MERS、BS下中国棉花生产碳达峰时间分别是2021、2025、2031年,峰值分别为24.89万、26.12万、27.25万t。研究表明,在未来棉花生产向着集约化和规模化方向发展的同时,提高生产效率以及加快低碳种植技术和土壤固碳技术的研发与推广是推动棉花低碳生产的主要突破点。
英文摘要:
      Breaking down the constitutive factors and influencing factors of carbon emissions, predicting the peak time and peak value of carbon emissions, and comprehensively analyzing the reduction potential of carbon emissions can provide a theoretical reference for responding to climate change, specific to industry. In this study, a life cycle assessment(LCA)was used to calculate carbon emissions from 2004 to 2018, whilst a Stochastic Impacts by Regression on PAT(STIRPAT)model was also conducted to simulate the production scale, cotton imports, agriculture economy, and urbanization rate, with variables determined by Kaya identity as technical efficiency. Furthermore, a ridge regression was used to determine the coefficient. The carbon emission scenarios from 2019 to 2035 were divided into three categories:high emission reduction scenario(HERS), medium emission reduction scenario(MERS), and basic scenario(BS)for variable setting and forecasting. From 2004 to 2018, carbon emissions and their growth rates in China's cotton production showed a gradual upward trend. In 2018, carbon emissions reached their highest values across the 15 years, equivalent to 243.4 thousand tons. Xinjiang had the highest carbon emissions(86.8% of the total in 2018)which also significantly increased. Irrigation electricity, fertilizer, and agricultural film were the main carbon emission factors in the production process. The STIRPAT model used to simulate carbon emissions from national cotton production performed well(R2=0.866, adjusted R2=0.792, P=0.001), and the independent variables all had significant effects on the dependent variable(P<0.01). The production scale, urbanization rate, and technical efficiency were the main influencing factors. The results showed that from 2019 to 2035, the carbon peak times of China's cotton production under HERS, MERS, and BS would be 2021, 2025, and 2031, respectively, alongside respective peak values of 248.9 thousand, 261.2 thousand, and 272.5 thousand tons. In the future, whilst China's cotton production is developing in terms of intensification and scale, improving production efficiency and accelerating the research, development, and promotion of low-carbon planting technology and soil carbon sequestration technology remain the main breakthrough points in terms of promoting low-carbon cotton production.
HTML    查看全文   查看/发表评论  下载PDF阅读器