文章摘要
茅寅,许昌华,廖鹏飞,吴其皓,戴隆超.毒死蜱在硅(110)晶面吸附的分子动力学模拟[J].农业环境科学学报,2023,42(3):624-631.
毒死蜱在硅(110)晶面吸附的分子动力学模拟
Molecular dynamics simulation of chlorpyrifos adsorption on a silicon(110)crystal plane
投稿时间:2022-08-17  
DOI:10.11654/jaes.2022-0827
中文关键词: 分子动力学模拟|毒死蜱|硅|吸附|浓度
英文关键词: molecular dynamics simulation|chlorpyrifos|silicon|adsorption|concentration
基金项目:国家自然科学基金项目(11372269)
作者单位E-mail
茅寅 扬州大学机械工程学院, 江苏扬州 225127  
许昌华 扬州大学机械工程学院, 江苏扬州 225127  
廖鹏飞 扬州大学机械工程学院, 江苏扬州 225127  
吴其皓 扬州大学机械工程学院, 江苏扬州 225127  
戴隆超 扬州大学机械工程学院, 江苏扬州 225127 lcdai@yzu.edu.cn 
摘要点击次数: 1029
全文下载次数: 669
中文摘要:
      为了研究利用硅微传感器检测农药——毒死蜱,基于分子动力学模拟方法,采用Materials studio软件进行研究,模拟真空环境和水环境中硅(110)晶面对毒死蜱分子的吸附过程,计算出了吸附能和吸附性能等。结果表明:水环境中毒死蜱和硅晶面的吸附能小于真空环境下的吸附能,其中毒死蜱与水分子的疏水作用能为吸附能变化的主要影响因素;水环境下最终吸附平衡构型中,分子并不完全吸附于基底,模拟温度在288 K、模拟时长在600 ps时,被吸附农药的分子量最多;毒死蜱分子距离硅晶面越近,被吸附的分子量越多。研究表明,在实际农药检测工作中,288、298、308 K温度下硅微传感器检测农药毒死蜱浓度的结果需要对应不同的浓度限值,即0.030、0.020、0.027 mg·L-1
英文摘要:
      Molecular dynamics simulation methods and silicon microsensors were used to detect chlorpyrifos. Materials studio software was used to study the process of adsorption of chlorpyrifos molecules to the crystal silicon(110) surface in both vacuum and aquatic environments, following which the adsorption energy and adsorption performance were calculated. The results showed that the adsorption energy of chlorpyrifos and a silicon surface in an aquatic environment was lower than that in a vacuum environment. The hydrophobic interaction between chlorpyrifos and water molecules was the main factor affecting the change in adsorption energy. In the final adsorption equilibrium configuration in the aquatic environment, the molecules were not completely adsorbed to the substrate. At a simulation temperature and time of 288 K and 600 ps, respectively, the molecular weight of the adsorbed pesticide was the highest. The closer chlorpyrifos molecules were to the silicon surface, the more molecular weight they adsorbed. According to the results, in actual pesticide detection work, the results of chlorpyrifos concentration detection by silicon microsensors at 288, 298 K, and 308 K need to correspond to different concentration limits, namely 0.030, 0.020 mg·L-1, and 0.027 mg·L-1, respectively.
HTML    查看全文   查看/发表评论  下载PDF阅读器