文章摘要
迟宇博,吴磊,李蕊,高爽.不同措施黄绵土坡地暴雨侵蚀及磷素流失特点[J].农业环境科学学报,2020,39(12):2833-2843.
不同措施黄绵土坡地暴雨侵蚀及磷素流失特点
Characteristics of soil erosion and phosphorus loss from loessial sloping land under different measures during heavy rainstorms
投稿时间:2020-03-30  
DOI:10.11654/jaes.2020-0357
中文关键词: 横垄  植被  生物炭  坡度  土壤侵蚀  磷素流失
英文关键词: horizontal ridge  vegetation coverage  biochar  slope  soil erosion  phosphorus loss
基金项目:国家自然科学基金项目(51679206);陕西省青年科技新星项目(2017KJXX-91);“仲英青年学者”项目(Z111021720)
作者单位E-mail
迟宇博 西北农林科技大学旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100
西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100 
 
吴磊 西北农林科技大学旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100
西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100
西北农林科技大学水利与建筑工程学院, 陕西 杨凌 712100 
lwu@nwsuaf.edu.cn 
李蕊 西北农林科技大学旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100
西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100 
 
高爽 西北农林科技大学旱区农业水土工程教育部重点实验室, 陕西 杨凌 712100
西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100 
 
摘要点击次数: 1741
全文下载次数: 1281
中文摘要:
      为探讨不同管理措施对10°、15°和20°黄绵土坡面侵蚀及磷素流失的影响,本文以60 mm·h-1为试验雨强,采用室内人工模拟降雨试验方法,以CK(裸坡,0%生物炭,平作)为对照,分析C1(裸坡,0%生物炭,横垄)、C2(裸坡,3%生物炭,平作)、C3(裸坡,3%生物炭,横垄)、C4(裸坡,6%生物炭,平作)、C5(裸坡,6%生物炭,横垄)、C6(植被,0%生物炭,平作)、C7(植被,0%生物炭,横垄)、C8(植被,3%生物炭,平作)、C9(植被,3%生物炭,横垄)、C10(植被,6%生物炭,平作)和C11(植被,6%生物炭,横垄)多措施下黄绵土坡地泥沙及磷素流失特征。结果表明:不同坡度下C1、C6、C7、C8、C9措施能有效降低黄绵土坡面侵蚀及磷素流失;施加生物炭(C2~C5、C8~C11)加剧了坡地尤其是陡坡的土壤侵蚀和磷素流失;在不同坡面上布设植被措施(C6~C11)均具有拦沙固磷作用,在15°坡面效果最优;横垄措施(C1、C3和C5)减沙固磷效应随坡度增大而减弱,在20°下易失效,故小于10°坡面上宜推广应用横垄措施;植被与横垄措施相结合(C7、C9和C11)在不同坡度下的消减率均在50%以上,故在实际农业生产中建议使用横垄搭配植被措施。黄绵土坡面磷素流失以颗粒态(PP)为主,PP/TP流失比例多在80%以上,并随坡度增大而增大;3种坡度下施加生物炭(C2、C4)均使PP占比增至90%以上,而横垄和植被措施能有效降低坡面PP/TP比例。综上,缓坡上设置横垄,陡坡上设置植被或者在植被覆盖基础上合理搭配横垄和3%生物炭措施,均有利于阻控黄绵土坡面土壤侵蚀和磷素流失。
英文摘要:
      A simulated rainfall experiment of 60 mm·h-1 was conducted to investigate the effects of different management measures on slope erosion, and sediment and phosphorus loss on loessial sloping land of 10°, 15°, and 20° for CK(bare slope, 0% biochar, flat tillage), C1(bare slope, 0% biochar, horizontal ridge), C2(bare slope, 3% biochar, flat tillage), C3(bare slope, 3% biochar, horizontal ridge), C4 (bare slope, 6% biochar, flat tillage), C5(bare slope, 6% biochar, horizontal ridge), C6(vegetation coverage, 0% biochar, flat tillage), C7 (vegetation coverage, 0% biochar, horizontal ridge), C8(vegetation coverage, 3% biochar, flat tillage), C9(vegetation coverage, 3% biochar, horizontal ridge), C10(vegetation coverage, 6% biochar, flat tillage), and C11(vegetation coverage, 6% biochar, horizontal ridge). The results showed that C1, C6, C7, C8, and C9 effectively reduced the soil erosion and phosphorus loss of different loessial slopes. Soil erosion and phosphorus loss were aggravated by the application of biochar(C2~C5, C8~C11), especially on steep slopes. Vegetation coverage(C6~C11)effectively slowed sediment and phosphorus loss on different slopes, and the controlling effect was optimal on the 15° slope. The mitigation effect of the horizontal ridge on the bare slope(C1, C3, and C5)decreased as the slope increased and was liable to fail at 20°; thus the horizontal ridge was recommended for slopes ≤ 10°. The combination of vegetation coverage and horizontal ridge(C7, C9, and C11)effectively reduced sediment and phosphorus loss for different slopes with a reduction rate of ≥ 50% and was advisable for agricultural production. Particulate phosphorus(PP)was the primary form of phosphorus loss on loessial sloping land, accounting for more than 80% in most scenarios and increasing with increased slope. Applying biochar increased the proportion of PP loss, the proportion of C2 and C4 accounted for more than 90%, and the installation of the horizontal ridge and vegetation coverage reduced the PP/TP proportion. Therefore, the horizontal ridge on a gentle slope, a reasonable combination of vegetation coverage, and a 3% biochar application on a steep slope were beneficial for controlling the soil erosion and phosphorus loss of loessial slopes.
HTML    查看全文   查看/发表评论  下载PDF阅读器