文章摘要
杜锟,李发东,涂纯,李兆.模拟增温对华北农田土壤碳排放的影响[J].农业环境科学学报,2020,39(4):691-699.
模拟增温对华北农田土壤碳排放的影响
Effects of simulated warming on carbon emissions from farmland soil and related mechanisms
投稿时间:2019-12-04  
DOI:10.11654/jaes.2019-1336
中文关键词: 模拟增温  翻耕农田  土壤  CO2通量  CH4通量
英文关键词: simulated warming  conventional tillage system  soil  CO2 flux  CH4 flux
基金项目:国家自然科学基金项目(41771292,31170414);国家自然科学基金委员会与联合国环境署合作研究项目(41761144053)
作者单位E-mail
杜锟 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101
山东禹城农田生态系统国家野外科学观测研究站, 山东 禹城 251200
中国科学院大学资源与环境学院, 北京 100049 
 
李发东 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101
山东禹城农田生态系统国家野外科学观测研究站, 山东 禹城 251200
中国科学院大学资源与环境学院, 北京 100049 
lifadong@igsnrr.ac.cn 
涂纯 中国地质科学院岩溶地质研究所岩溶生态系统与石漠化治理重点实验室, 广西 桂林 541004  
李兆 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101
山东禹城农田生态系统国家野外科学观测研究站, 山东 禹城 251200 
 
摘要点击次数: 1625
全文下载次数: 2015
中文摘要:
      为研究增温效应下农田温室气体排放的变化和机制,选择华北平原的山东禹城农田生态系统国家野外科学观测研究站当地典型的冬小麦-夏玉米农田为研究对象,设计翻耕增温(CTW)处理和翻耕不增温(CTN)对照开展多年增温试验。2014年10月出苗期至2015年12月冬小麦越冬期持续增温,2016年初至2016年9月增温设备因故障关闭。结果显示,2014—2015年,冬小麦期土壤温度显著增加1.31℃(P<0.05),夏玉米期土壤温度升高0.71℃(P>0.05),而全年土壤体积含水量均值对增温无显著响应,仅越冬期土壤含水量增加明显。两年期内,增温抑制冬小麦季CO2累积排放达20.35%,以3月和5月差异表现最为明显。2014—2016年冬小麦季,CTW、CTN处理的年均CH4累积吸收量分别为1 641.2、2 185.7 g·hm-2,增温抑制冬小麦季CH4吸收,但对夏玉米季CH4通量无显著作用。冬小麦季增温降低CTW处理土壤微生物生物量碳值达26.55%,而微生物生物量氮仅个别施肥和灌溉月份对增温响应显著。两年期冬小麦和夏玉米季CTW、CTN地上生物量均值分别为12.19、16.33 mg·hm-2和16.41、21.18 mg·hm-2,表明增温降低了地上作物生物量。研究表明,长期增温显著抑制小麦季土壤CO2释放和CH4吸收,但玉米期碳排放和吸收的响应相对较弱。增温条件下,土壤水热条件和生物量依然是限制土壤碳通量的重要因素。
英文摘要:
      Cropland ecosystem is one of the most critical sources of carbon emissions. It is of great importance to study the changes in greenhouse gas emissions from farmland under global warming, and their mechanisms, to understand the global carbon cycle, and to lessen the acceleration of the global greenhouse effect. We carried out a simulated warming experiment at the Yucheng Shandong Agro-ecosystem National Observation and Research Station, Ministry of Science and Technology, located on the North China Plain. The experiment involved a conventional tillage and warming(CTW)treatment, and a conventional tillage with no-warming(CTN)control, or a typical local crop rotation of winter wheat(Triticum aestivum L.)and summer maize(Zea mays L.). The warming period was from October 2014 to December 2015, after which the heating equipment was shut down from the beginning of 2016 to September 2016 due to technical failure. The results showed that, from 2014 to 2015, soil temperature in the winter wheat period was increased significantly by 1.31℃(P<0.05), but heating had no distinct effect on soil temperature in the summer maize period(P>0.05). The mean soil water content had no significant response to warming during the two-year study period, and only the soil water content in the winter period was increased significantly by the warming. During the two-year study period, heating inhibited cumulative CO2 emissions in the winter wheat period by 20.35%, especially in March and May. In the winter wheat season from 2014 to 2016, the average annual cumulative CH4 absorption of CTW and CTN was 1 641.2 g·hm-2 and 2 185.7 g·hm-2, respectively. Warming inhibited CH4 absorption in the winter wheat season but had no significant effect on CH4 flux in the summer maize period. The soil microbial biomass carbon of CTW was decreased by 26.55% in the winter wheat season, but the response of microbial biomass nitrogen to warming was only obvious in special fertilization and irrigation months. The mean aboveground biomasses of CTW and CTN in winter wheat and summer maize were 12.19, 16.33, 16.41 and 21.18 mg·hm-2, respectively, indicating that warming had reduced the aboveground crop biomass. It was found that long-term warming significantly inhibited soil CO 2 emissions and CH4 absorption in the winter wheat season, but the responses of carbon emissions and absorption in the maize stage were not significant. Under warming conditions, soil water and heat conditions and aboveground biomass are still important factors in limiting the soil carbon flux.
HTML    查看全文   查看/发表评论  下载PDF阅读器