应用 II₉ s ∮ _A 抑制青苔生长的研究

沈 宏 王效常 曹志洪

(中科院南京土壤所开放室,南京 yxxxxxE)

摘 要 水培试验研究了 $II_0 s \phi_A$ 对青苔的抑制作用。结果表明,在一定的光照和养分条件下,青苔迅速生长时间为第 $z A \rho$ 。青苔生长的最适 Φ 为 ΓuB ,缺磷对青苔抑制作用明显 $E : vv \partial II_0 s \phi_A$ 溶液能有效抑制青苔生长,而且对培养作物(肥田萝卜)不产生毒害作用。

关键词 青苔 II₉ s ♦ A 磷 抑制作用

水培和砂培试验过程中,经常会碰到青苔污染营养液的现象,给试验带来很大麻烦。有人提出用黑胶布遮盖营养液,这种方法有一定防止污染作用,但遇到起风、更换营养液或通气就很不方便,必须重新折开,费功、费时。II。s \$\phi_A\$ 是一种消毒剂,也是植物必需的营养成分。铜作为养分元素,对植物的营养作用和铜对海洋底栖绿藻缘管浒苔的毒性效应已有报道。s \$\phi_A\$ 使如何合理使用 II。s \$\phi_A\$ 控制营养液中青苔生长的研究很少。本试验就 II。s \$\phi_A\$ 抑制青苔生长开展了较为系统的研究。

x 材料与方法

xux 试验用盆,盆内径 $xB\pi$ 1,盆高 $xu\pi$ 1。培养试验开始前,试验用盆均用稀盐酸、蒸馏水清洗干净。

x uy 水培营养液由完全营养液和缺磷营养液组成,其中完全营养液组成(単位 1 1 30 v ∂) 为 ∂ Φ $_{A}$ Φ $_{y}$ ϕ $_{A}$ x , ∂ Φ $_{A}$ ∂ ϕ $_{z}$ y $_{z}$ B $_{z}$

xuz 处理设置 $H\Phi$ 试验设置 $_{+}\Phi\Gamma$, $_{+}\Phi\Delta uB$, $_{+}\Phi\Delta z$ 个处理;磷胁迫试验设置缺磷、供磷及蒸馏水 $_{z}$ 个处理; Π_{s} $_{s}$ $_{h}$ 试验设置w,A,E,xy $_{+}vv\partial$ $_{h}$ $_{h}$

 $xuA \cdot \Phi$ 计测量培养液 $\cdot \Phi$ 。 xuB 原子吸收分光光度法测铜。

y 结果与讨论

yux 不同 Φ 条件下,青苔生长动态

图x 可知,培养前期青苔生长迅速,生

 \mathbf{g}_{x} 4 $\mathbf{\Phi}$ 对青苔干重的影响

长率最大时期是第z、 $A\rho$,第 $\Gamma\rho$ 时青苔干重最大可达 $E_{V^{\perp}}vv$ 盆。不同 $^{\perp}\Phi$ 处理对青苔生长影响明显。青苔干重以 $^{\perp}\Phi\Gamma\iota B$ 处理最大, $^{\perp}\Phi\Gamma$ 处理次之, $^{\perp}\Phi\Delta$ 最小,这说明,青苔生长喜偏酸性环境。

yuy 磷胁迫对青苔干重的影响

磷胁迫条件下青苔生长明显受阻。正常供磷处理青苔干重为 $yEuA \cdot vs$ 约为缺磷处理 $zux \cdot vp$ 的Z倍。而蒸馏水处理检测不到青苔。这说明,养分是限制青苔生长的重要因子。水培营养液中,磷是青苔生长的主要影响元素。青苔生长需要 $\Pi \cdot \vartheta \cdot \phi$ 等营养元素, $\Pi \cdot \vartheta$ 可以从空气通过光合、固定等作用获得,而 ϕ 只能从营养液中得到,缺磷明显抑制青苔生长。

y ιε Π₉ s φ _A 对青苔抑制作用

 $wAE_{xy} + vv\partial$ 的 $\Pi_{s} \circ \phi_{A}$ 处理,其青苔 干重分别为 $zBu\Gamma$ 、 $\Gamma u\Gamma$ 、xuB、xux + v,可见 II_0 $s \phi_A$ 溶液对青苔生长具有明显的抑制作用。不同浓度的 II_0 $s \phi_A$ 溶液对青苔生长抑制效果不同,培养 $\Gamma \rho$ 时, II_0 $s \phi_A$ 溶液对青苔抑制效果大小表现为 $xy \cdot vv \partial II_0$ $s \phi_A \Lambda E$ $vv \partial II_0$ $s \phi_A \Lambda A \cdot vv \partial II_0$ $s \phi_A$

$yuA II \circ s \phi A$ 处理对培养作物(肥田萝卜)的影响

表 r	$\Pi_{9} \circ \phi$	处理对肥田萝	ト干重及川9	今量。生-	と >7000 か 的 影 响

处理□□ /∂p	干重ロック	植株II。含量o + v /ωv p	根外观性状
w	was By	Zuy	正常
A	$wiz\Gamma B$	xz uB	正常
E	wuzBw	$xEu\Gamma$	正常
xy	wæxy	$yAu\Gamma$	新叶失绿,根系变短、变粗,根数少

z 结 论

- z w 正常阳光照射及养分充分供给条件下, 青苔生长最快时间为第z Αρ,缺磷处理与对 照相比,青苔生长极度缓慢,说明磷是青苔快 速生长的重要营养元素。
- z w 青苔生长最适 Φ 为 Γw .
- $z \approx II_{9} s \phi_{A}$ 抑制青苔生长的最适浓度为E $1 vv\partial$,此时不影响植物的正常生长。
- z uA 青苔生长受光照、养分浓度、抑制剂及水温等影响。

参考文献

农业环境保护sxZEAQ(A) HA~Z

- y 于志刚等 u 铜对缘管浒苔的毒性效应 u 环境科学学 报 xZZAQ:A(A) $HXZA\sim AZZ$
- z 谢加林 u 合成洗涤剂与水体的富营养化现象 u 环境保护, xZZEQA) HzZ~zx

作者简介

沈 宏,男、xE岁,博士。先后就读于河南农业大学、中科院南京土壤研究所。主要从事农业生态与环境、土壤与植物营养方面的工作,发表论文A篇。

x 张宁珍等 u 含铜灌溉水对水稻生长发育影响的试验 u