

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

腐植酸负载纳米零价铁对镉污染农田水稻籽粒代谢的影响

黄鹏,张静,王鸿辉,井江心,曾燕琼,陈铮,刘洋之

引用本文:

黄鹏,张静,王鸿辉,井江心,曾燕琼,陈铮,刘洋之.腐植酸负载纳米零价铁对镉污染农田水稻籽粒代谢的影响[J].农业环境科学学报,2024,43(4):732-740.

在线阅读 View online: https://doi.org/10.11654/jaes.2023-1058

您可能感兴趣的其他文章

Articles you may be interested in

全生育期淹水联合钝化材料对重度Cd污染下水稻生长和镉富集的影响

曹雲清,徐晓燕,韩磊,王瑞刚,冯人伟,徐应明 农业环境科学学报.2018,37(11):2498-2506 https://doi.org/10.11654/jaes.2018-0348

叶面喷施苹果酸对水稻Cd积累特性的影响

王惠君, 薛卫杰, 张昕, 张长波, 黄永春, 任兴华, 刘仲齐 农业环境科学学报. 2021, 40(2): 269-278 https://doi.org/10.11654/jaes.2020-0823

不同铁肥及其施用方法对水稻籽粒镉吸收的影响

上官宇先, 陈琨, 喻华, 秦鱼生, 曾祥忠, 周子军, 郭松, 张兰 农业环境科学学报. 2019, 38(7): 1440-1449 https://doi.org/10.11654/jaes.2018-1505

三种有机物料组成性质及其对土壤Cd形态与水稻Cd含量的影响

刘高云,柏宏成,叶碧莹,魏世强 农业环境科学学报.2019,38(8):1844-1854 https://doi.org/10.11654/jaes.2018-1461

镉砷复合污染条件下镉低吸收水稻品种对镉和砷的吸收和累积特征 单天宇, 刘秋辛, 阎秀兰, 邵金秋, 廖晓勇

农业环境科学学报. 2017, 36(10): 1938-1945 https://doi.org/10.11654/jaes.2017-0462

关注微信公众号,获得更多资讯信息

农业环境科学学报 Journal of Agro-Environment Science

黄鹏,张静,王鸿辉,等.腐植酸负载纳米零价铁对镉污染农田水稻籽粒代谢的影响[J].农业环境科学学报,2024,43(4):732-740.

HUANG P, ZHANG J, WANG H H, et al. Effects of humic acid-supported nanoscale zero-valent iron on the metabolism of rice grains in cadmium-contaminated farmland[J]. *Journal of Agro-Environment Science*, 2024, 43(4): 732-740.

腐植酸负载纳米零价铁对镉污染农田水稻籽粒代谢的影响

黄鹏1,张静3,王鸿辉3,井江心4,曾燕琼1,陈铮1*,刘洋之2*

(1.温州医科大学公共卫生与管理学院,浙江 温州 325035;2.浙江省农业科学院环境资源与土壤肥料研究所,农产品质量安全 危害因子与风险防控国家重点实验室,杭州 310021;3.厦门大学嘉庚学院环境与工程学院,福建 漳州 363105;4.浙江农林大 学环境与资源学院,杭州 311300)

摘 要:为探究腐植酸负载纳米零价铁(nZVI@HA)对镉(Cd)污染修复过程中水稻籽粒营养物质合成过程的影响,本研究采用吸附络合-液相还原法制备了一种nZVI@HA材料,同时开展水稻盆栽实验,利用电感耦合等离子体质谱及超高效液相色谱质谱技术,比较研究了nZVI@HA、纳米零价铁(nZVI)、腐植酸(HA)及nZVI与HA联合处理对Cd污染修复过程中水稻产量、籽粒中Cd含量及籽粒代谢物质组成的影响。结果表明:3组含Fe⁰处理均可提升水稻产量、降低水稻籽粒Cd的赋存水平。尤其是在nZVI@HA作用下,水稻产量显著提升至空白组的188%、籽粒Cd含量降至0.155 mg·kg⁻¹,低于我国大米Cd限量标准(0.2 mg·kg⁻¹,GB 2762—2022)。代谢组学分析显示,各含Fe⁰处理均可显著促进水稻籽粒倍他林生物合成及精氨酸和脯氨酸代谢(P<0.05且 VIP>1);同时Cd污染修复过程中,水稻籽粒还可通过丙氨酸、天冬氨酸和谷氨酸代谢,核苷酸代谢,甘氨酸、丝氨酸和苏氨酸代谢,及甘油磷脂代谢特异性响应 nZVI@HA处理。研究表明,nZVI@HA可特异性作用于水稻籽粒代谢过程,提升水稻抗性及产量。

关键词:镉;腐植酸负载纳米零价铁;水稻;代谢组学;差异代谢物

中图分类号:X53;S511 文献标志码:A 文章编号:1672-2043(2024)04-0732-09 doi:10.11654/jaes.2023-1058

Effects of humic acid-supported nanoscale zero-valent iron on the metabolism of rice grains in cadmiumcontaminated farmland

HUANG Peng¹, ZHANG Jing³, WANG Honghui³, JING Jiangxin⁴, ZENG Yanqiong¹, CHEN Zheng^{1*}, LIU Yangzhi^{2*}

(1. School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, China; 2. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; 3. School of Environmental Science and Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China; 4. School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China)

Abstract: In our study, a humic acid(HA) supported nanoscal zero valent iron(nZVI) material(nZVI@HA) was prepared by adsorption complexation-liquid phase reduction method to reveal the mechanism of the nutrients synthetic process in rice grains during the cadmium (Cd) remediation process. The effects of single nZVI@HA, nZVI, HA, and the mixture of nZVI and HA on rice yield, Cd content in grains, and metabolite compositions of grains in the soil Cd remediation process, were studied. Here, we conducted a series of rice pot experiments

收稿日期:2023-12-11 录用日期:2024-01-26

作者简介:黄鹏(1998—),男,江西萍乡人,硕士研究生,从事污染农田安全生产研究。E-mail:2672105162@qq.com

^{*}通信作者:刘洋之 E-mail:liuyz@zaas.ac.cn; 陈铮 E-mail:chenzheng_new@163.com

基金项目:国家自然科学基金项目(42307024,22306149);浙江省自然科学基金项目(LQ23D030007);浙江省科技创新领军人才项目 (2021R52045)

Project supported: National Natural Science Foundation of China (42307024, 22306149); Natural Science Foundation of Zhejiang Province, China (LQ23D030007); Science and Technology Innovation Leading Talent Project of Zhejiang Province, China(2021R52045)

equipped with ultra-high-performance liquid chromatography-mass spectrometry technology and inductively coupled plasma mass spectrometry. The results demonstrated that the three Fe⁰ treatments could increase rice yield and reduce the Cd content in rice grains. Especially under the application of nZVI@HA, the rice yield was significantly increased to 188% of control, and the Cd content in grains was reduced to 0.155 mg·kg⁻¹ lower than the national Cd limit standard for rice (0.2 mg·kg⁻¹, GB 2762—2022). Metabolomics analysis showed that the three Fe⁰-containing treatments could significantly promote betalain biosynthesis and the arginine and proline metabolism in grains (P<0.05 and VIP>1). Notably, the grains could also respond highly and specifically to nZVI@HA through alanine, aspartate, and glutamate metabolism, nucleotide metabolism, glycine, serine and threonine metabolism, and glycerophospholipid metabolism. Above all, nZVI@HA has specific effects on grain metabolisms, leading to improvements in rice resistance and yield.

Keywords: cadmium; humic acid supported nano zero-valent iron; rice; metabolomic; differential metabolite

水稻是我国重要的粮食作物,农田土壤重金属污染会严重影响其产量及品质。据统计,我国每年因农田重金属污染减产的粮食超过1200万t,造成直接经济损失200多亿元^[1]。其中,镉(Cd)作为农田土壤中主要的重金属污染物之一,其点位超标率为7.0%^[2]。Cd在农田土壤-植物系统中的迁移、转化行为极为活跃,不仅会严重影响土壤结构与功能,还可富集于水稻、小麦等粮食作物籽粒中,并经食物链作用于人体肝脏、肾脏及运动系统等,对人类健康造成潜在威胁^[3-6]。因此,改善农田土壤环境、保障粮食安全生产,不仅是环境科学发展的重要方向之一,也是提升农业生态环境安全的重要需求。

近年来,纳米技术的发展为污染农田土壤的快 速、绿色修复提供了新机遇。其中,纳米零价铁(Nanoscale zero-valent iron, nZVI)因具有比表面积大、表 面活性高及还原活性强等优势,在解决土壤重金属污 染问题上显示出了良好的应用潜力^四。一方面,nZVI 可通过钝化作用,降低土壤中铬(Cr)、铅(Pb)及Cd等 重金属污染物的生物可利用性,削弱有毒物质向食物 链迁移能力,在重金属污染土壤的修复中起着核心作 用^[8-10]。另一方面,nZVI可促进水稻根表铁膜形成, 限制 Cd 向植物内部迁移^[11]。值得注意的是,nZVI作 为一种潜在的纳米肥料,可促进水稻分蘖、淀粉等营 养物质合成,从而提高水稻产量[12]。尽管 nZVI 在重 金属污染农田土壤修复中彰显了良好的应用前景,然 而受范德华力、高表面能和磁性作用影响,添加到环 境中的nZVI颗粒易发生团聚或氧化,这严重限制了 其在现实土壤污染修复中的推广应用^[13]。因而,nZVI 的改性研究受到了国内外研究者的持续关注。

腐植酸(HA)作为一种天然有机聚合物,含有大量的活性官能团,兼具来源广泛、环境风险低等特点¹¹⁴¹,已成功应用于包括nZVI、硫化亚铁等在内的多种铁基纳米材料的改性过程。HA改性铁基纳米材料的分散性、稳定性及其在多孔介质中的迁移能力均有

显著提升,且在污染物修复过程中展现了更高的反应 活性^[15-16]。Tan等^[17]证明经HA包覆后纳米硫化亚铁 水合粒径减小,且该材料可通过吸附、还原及共沉淀 作用,实现对含Cr(VI)废水的高效修复。然而相关 研究主要集中于HA改性铁基纳米材料对环境介质 中重金属修复及生物有效性的影响,对于其如何影 响污染修复过程中水稻籽粒营养物质合成尚不得而 知。

代谢组学旨在对生物细胞在特定时期内小分子 代谢物质(相对分子质量小于1000)进行定量和定性 分析,目前已广泛应用于医学、中药学、环境毒理学等 领域[18-20]。代谢组学技术不仅有助于识别差异代谢 物、辨别作物品种,还可通过筛选差异代谢通路揭示 作物抵抗逆境的调控机制^[21-22]。Lan等^[23]利用代谢组 学技术发现,水稻幼苗组织可通过上调氨基酸、有机 酸等组分缓解Cd污染胁迫。然而,目前对于土壤Cd 污染修复研究较少关注到nZVI及其改性材料对水稻 籽粒代谢过程的影响,有关污染农田土壤修复过程中 籽粒的分子响应机制尚不清晰。为此,本研究采用吸 附络合-液相还原法制得一种HA改性nZVI材料(nZVI@ HA),结合水稻盆栽实验,利用代谢组学技术,探明 nZVI及其改性材料对于Cd污染土壤修复过程中水 稻产量、籽粒中Cd赋存水平及营养物质组成结构的 影响。

1 材料与方法

1.1 土壤采集与分析

受试土壤采自浙江省绍兴市柯桥区任家畈村稻 田 0~20 cm 表层土(29°57′40″N,120°30′34″E)。土 样经风干过筛后备用。受试土壤 pH 为 6.35、有机质 含量为 65.93 g·kg⁻¹,碱解氮、有效磷和有效钾含量分 别为 211.77、31.03 mg·kg⁻¹和 150.63 mg·kg⁻¹。

1.2 试剂及仪器

硫酸亚铁(FeSO4, AR, 上海凌峰化学试剂有限公

司)、硼氢化钠(NaBH₄,含量≥96%,国药集团化学试 剂有限公司)、氯化镉(CdCl₂,AR,国药集团化学试剂 有限公司)、硝酸(HNO₃,GR,晶瑞电子材料股份有限 公司)、过氧化氢(H2O₂,GR,永华化学股份有限公 司),代谢组分析所用有机溶剂均为色谱级。

火焰原子吸收光谱(VARIAN公司)、有机元素分 析仪[艾力蒙塔贸易(上海)有限公司]、电感耦合等离 子体质谱(ICP-MS,赛默飞)、超高效液相色谱串联傅 里叶变换质谱(UHPLC-Q Exactive HF-X,赛默飞)、 扫描电镜(SEM,荷兰FEI公司)。

1.3 材料的合成与表征

以商品化腐植酸钾为原料,通过酸析法获得HA, 采用液相还原法制得 nZVI^[24],并在此基础上通过改进 合成 nZVI@HA。具体操作方法如下:配制 FeSO₄与 HA 混合溶液(m_{Fe²⁺}:m_{HA}=1:1),搅拌 12 h后,在氮气条 件下泵入 NaBH₄溶液,经搅拌、离心、真空干燥获得 nZVI@HA。利用 SEM 对 HA、nZVI及 nZVI@HA 进行 形貌结构表征。所得材料经微波消解后,总铁含量以 火焰原子吸收光谱测定。利用有机元素分析仪测定 各材料中C、N、H和S的含量。

1.4 盆栽实验

以浙粳100为受试生物,利用水稻盆栽实验,比 较研究Cd污染土壤中,nZVI、HA单一/联合处理以及 nZVI@HA作用下水稻产量及籽粒代谢物组成结构。 各组Cd含量为20mg·kg⁻¹,考虑到nZVI@HA中铁含 量为58.5%,各处理设置如下:空白组、nZVI@HA处 理组(1 000 mg·kg⁻¹)、单一 nZVI 处理组(585 mg· kg⁻¹)、单一HA处理组(415 mg·kg⁻¹)、nZVI和HA联合 处理组(585 mg·kg⁻¹ nZVI+415 mg·kg⁻¹ HA),分别记 为CK、nZVI@HA、nZVI、HA、nZVI+HA。nZVI等修复 材料通过与洁净土壤逐级稀释均匀分散于土壤中,以 达到实验设置的含量;Cd2+以CdCl2溶液的形式注入 到土壤中后搅拌均匀。老化处理参照王萌等[25]的方 法,土壤静置平衡两周后再种植水稻,各处理含干土 质量为3.5 kg,实验设置3个平行,每个平行包含3株 水稻作物。实验期间保持盆栽液面高于土壤1~3 cm。于灌浆期收集水稻籽粒,籽粒经液氮速冻后保 存于-80 ℃冰箱,用于代谢组学分析;于140 d收割水 稻记录籽粒质量后进行籽粒Cd含量测定。

1.5 水稻籽粒Cd含量测定

水稻籽粒中Cd含量的测定方法参考《食品安全 国家标准 食品中镉的测定》(GB 5009.15—2014)^[26]。 成熟期籽粒冷冻干燥之后脱壳、研磨,称取0.5g于消 解管中,增设两个空白试剂以及标准Cd大米[GBW (E)100358]进行质量控制,加入5mLHNO3以及2mL H₂O₂,利用微波消解仪进行消解,经赶酸、定容后使用 ICP-MS测定Cd含量,质控样品平均回收率为92.9%。

1.6 水稻籽粒代谢组学分析

称取(50±5) mg灌浆期籽粒,加入400 µL含有 0.02 mg·mL⁻¹L-2-氯苯丙氨酸的甲醇提取液($V_{\#\#}$: V_{*} =4:1)。样品经研磨、超声30 min(5 ℃,40 kHz)、 静置30 min(-20 ℃)、离心15 min(4 ℃,13 000 g)后, 移取上清液至棕色液相小瓶中,待测。

利用 UHPLC-Q Exactive HF-X 平台进行代谢物 质分析。详细仪器条件如下:色谱柱为 ACQUITY UPLC HSS T3(100 mm×2.1 mm i.d., 1.8 μ m; Waters, 美国);流动相A为95%水+5%乙腈(含0.1%甲酸), 流动相B为47.5%乙腈+47.5%异丙醇+5%水(含 0.1%甲酸),进样量为3 μ L,柱温为40°。利用正负 离子扫描模式采集质谱信号,其中正模式及负模式 喷雾电压均为3500V,扫描范围为70~1050 m/z,鞘 气及辅助气流速分别为50 arb和13 arb,鞘气和辅助气 均为氮气,毛细管温度为425°C,S-Lens电压为50V, 碰撞能为20、40、60 eV,Full MS及MS²分辨率分别为 60000和7500。

1.7 数据处理与统计分析

利用 SPSS 27.0 软件对数据进行统计分析,数据 正态性以 q-q plot 和 Shapiro-Wilk 检验,方差齐性以 Levene检验,并对非正态、非齐性数据进行对数转换。 对满足正态分布及方差齐性的数据采用单因素方差 分析(ANOVA)和 LSD 进行检验。利用 ProgenesisQI (WatersCorporation, Milford,美国)软件进行代谢组学 数据分析,以 HMDB Version 5.0(https://www.hmdb. ca/)、METLIN(https://metlin.scripps.edu/)数据库及美 吉自建数据库进行代谢物鉴定匹配。

2 结果与讨论

2.1 材料的表征

对HA、nZVI及改性后的nZVI@HA进行形貌结构分析、有机元素分析及总铁含量测定。如图1所示,HA在扫描电镜下呈不规则块状结构,nZVI为球形 且高度聚合的链条状,nZVI@HA的电镜照片显示球形的nZVI分散于块状的HA表面。元素分析及总铁含 量测定结果显示,HA中C、Fe、N、H、S的含量分别为 50.9%、0.8%、1.1%、3.2%、2.1%,nZVI中上述元素含量 分别为0.3%、84.4%、0、0.3%、0.1%,nZVI@HA 中各元

图1 HA(a)、nZVI(b)和nZVI@HA(c)的电镜图及元素含量(d) Figure 1 HA(a),nZVI(b),and nZVI@HA(c) electron microscopy and element content(d)

素含量分别为16.4%、58.5%、0.4%、1.1%、0.2%。上述 结果表明 nZVI@HA 材料制备成功。

2.2 不同修复材料对Cd污染土壤上水稻生产的影响

不同处理条件下水稻产量及籽粒 Cd 含量如图 2 所示,CK组水稻产量为4.24g·株⁻¹,nZVI、HA 和 nZVI+ HA 组水稻产量分别为 5.29、6.67g·株⁻¹和 7.57g· 株⁻¹。Guha等^[10]的研究证实,nZVI可通过改善根系代 谢、提升水稻光合速率、增加水稻叶片光合色素含量 等途径,促进Cd污染土壤上水稻产量的提升。张洪 江等^[27]也发现Cd污染土壤中施加含HA的肥料有助 于水稻产量的提升。值得注意的是,nZVI@HA组水 稻产量最高,达到7.95g·株⁻¹;且nZVI@HA处理组水 稻籽粒Cd含量为0.155 mg·kg⁻¹,显著低于CK(0.776 mg·kg⁻¹)、nZVI(0.442 mg·kg⁻¹)、HA(0.596 mg·kg⁻¹)及

Figure 2 Rice yield and Cd content in grains under different treatments

www.aes.org.cn

nZVI+HA处理组(0.392 mg·kg⁻¹)。该结果表明,nZVI@HA 在显著抑制水稻籽粒中 Cd 累积的同时还可以促进水 稻籽粒产量的提升。然而,现有研究主要报道了 nZVI 等修复材料对农田土壤中重金属迁移、转化机制及生 物有效性的影响^[28-29],对于 nZVI及其改性材料如何影 响污染修复过程中水稻籽粒营养物质合成尚不得而 知。阐明 nZVI及其改性材料对农田 Cd 污染土壤修 复过程中水稻籽粒营养物质组成结构的影响,有助于 揭示农田 Cd 污染土壤修复过程中修复材料对水稻籽 粒代谢物质的种类、含量及代谢通路的影响。

2.3 代谢物多元统计分析

主成分分析(PCA)是一种无监督分析,通过对复 杂数据进行降维处理,将复杂数据简单化并揭示其 结构关系^[30]。如图 3a 所示,第一主成分解释率为 31.0%,第二主成分解释率为14.7%,第三主成分解释 率为11.2%,主成分累计解释率为56.9%,能在一定 程度上反映各组水稻籽粒代谢物存在的差异。CK、 HA与nZVI@HA、nZVI、nZVI+HA组在第一主成分上 发生分离,其原因可能是CK组与HA组未添加Fe⁰, 导致CK和HA处理组水稻籽粒代谢物组成结构与 nZVI@HA、nZVI和nZVI+HA处理组差异较大。偏最 小二乘法回归分析(PLS-DA)是一种有监督分析,可 通过忽略组内误差,突出组间误差。图 3b 显示组内 样品更加紧密,组间样本呈明显分离,未出现重叠现 象,说明模型适用性好。nZVI@HA、nZVI和nZVI+HA 组在第二主成分发生明显分离,其原因可能在于3组 含Fe[®]处理对于水稻籽粒代谢物组成及含量的影响差 异较大。累计解释率 R²X 及 R²Y 分别为 0.699 和 0.983, Q²为0.797, 置换检验结果均低于原始数据点 (图3c),且回归线呈现向上的趋势,说明模型具有良 好的解释度以及预测度。置换检验的结果显示回归 线截距小于0.05,说明模型未发生过拟合,模型拟合 结果可靠[31]。

2.4 差异代谢物筛选

为探究不同修复材料对 Cd 污染土壤上水稻籽粒 代谢物组成的影响,以 VIP>1、P<0.05为筛选标准,将 nZVI@HA、nZVI、HA、nZVI+HA 组分别与 CK 组作比 较,筛选差异代谢物。如图 4a 所示, nZVI@HA vs CK 组差异代谢物最多(高达 436个,其中 218个上调、218 个下调),表明 nZVI@HA 对 Cd 土壤修复过程中水稻 籽粒代谢物组成的影响最大; nZVI vs CK 组差异代谢 物次之(344个),其中 265个上调,79个下调; nZVI+ HA vs CK 组差异代谢物较少(278个),其中 131个上

图 3 PCA 分析(a)、PLS-DA 分析(b)及置换检验结果(c) Figure 3 Results of PCA analysis(a), PLS-DA analysis(b), and replacement test(c)

调,147个下调;HA vs CK 组差异代谢物最少(120 个),其中92个上调,28个下调。差异代谢物分类如 图4b所示,这些差异代谢物主要分为脂质和类脂分 子、有机酸及其衍生物、有机杂环化合物、有机氧化合 物、苯丙烷类和聚酮、苯环型化合物等。其中脂类不 仅可作为水稻籽粒的营养成分,且对抵抗逆境胁迫起 到积极作用^[32]。同时,有机酸是植物体内重要的金属 配体,可与进入水稻体内的重金属发生络合或螯合作 用,从而降低重金属的毒害作用^[33]。

2.5 共有及HA处理特有差异代谢物分析

以各处理组 vs CK 组的差异代谢物组成代谢集,

Figure 4 Numbers(a) and classification(b) of differential metabolites

各代谢集共有及特有差异代谢物如图5所示。研究 结果表明,4组代谢集中含有9种共有差异代谢物,其 中酵母氨酸(糖精)等6种化合物在nZVI@HA、nZVI、 HA及nZVI+HA处理组中均显著上调,癸烯酰基肉碱 (HMDB0241069)等3种化合物显著下调。经KEGG 数据库匹配,共得到赖氨酸降解(map00310)、赖氨酸 生物合成(map00300)及核苷酸代谢(map01232)等11 条代谢途径。然而,以P<0.05 且影响因子>0.1为筛 选条件,无法富集到关键代谢通路。该现象说明,Cd 污染土壤修复过程中,nZVI@HA、nZVI、HA及nZVI+ HA处理对水稻籽粒营养物质合成及代谢的影响存在 差异,无法通过相同的分子响应机制阐释不同处理条 件下水稻产量及品质提升的原因。这一结果与PCA 分析一致,可能是由于含Fe⁰处理组(即nZVI@HA、 nZVI及nZVI+HA处理组)与HA处理组水稻籽粒营 养物质组成结构差异较大,无法富集到共有的关键代

 $Figure \ 5 \ Venn \ diagram(a), cluster \ analysis \ heat \ map(b), and \ metabolic \ pathway \ enrichment \ diagram(c)$

www.aes.org.cn

谢路径。HA vs CK、nZVI+HA vs CK及 nZVI@HA vs CK代谢集(即含 HA 处理)共有 10个差异代谢物,其 中1个为HA处理特有差异代谢物。该代谢物无法富 集到代谢通路,表明HA处理对水稻籽粒代谢物种类 及含量影响较小。

2.6 Fe[®]处理特有差异代谢物及路径分析

为探明nZVI及其改性材料对Cd污染农田土壤上水 稻籽粒分子调控机制的影响,详细考察了nZVI@HA、 nZVI及nZVI+HA处理组(即含Fe[®]处理)的差异代谢 物组成。代谢集分析结果显示,nZVI@HA vs CK、nZVI vs CK及nZVI+HA vs CK组代谢集共有93个差异代谢 物,其中84个为Fe[®]处理特有差异代谢物(39种上调、 45种下调)。KEGG通路富集显示,3种Fe[®]处理特有 差异代谢物共参与20条代谢路径,其中仅有倍他林 生物合成(map00965)、精氨酸和脯氨酸代谢 (map00330)2条显著富集代谢通路(P<0.05 且影响因 子>0.1)(图 6a);同时注释到的4种关键差异代谢物 (脯氨酸、亚精胺、多巴胺、亚茶碱)均在nZVI@HA、 nZVI及nZVI+HA处理下显著上调。该结果表明,3 种Fe[®]处理均可通过促进其他次生代谢物合成及氨基 酸代谢等方式,提升Cd污染土壤上水稻的产量及品 质。已有研究证实脯氨酸、亚精胺及多巴胺等化合物 在植物抗逆反应中发挥重要作用[34-36]。如脯氨酸不 仅具有渗透压调节及重金属螯合能力,还可以显著降 低Cd、Zn等重金属污染对植物体内葡萄糖-6-磷酸脱 氢酶及硝酸还原酶的胁迫。此外,亚精胺在缓解重金 属氧化胁迫的同时,还作为一种关键的植物生长促进 因子,促进植物细胞分裂和营养物质合成。

2.7 nZVI@HA处理特有差异代谢物及路径分析

各代谢集特有差异代谢物显示:nZVI@HA vs CK 组(166个)>nZVI vs CK组(87个)>nZVI+HA vs CK组 (66个)=HA vs CK组(66个)。该结果与差异代谢物 鉴定结果趋势类似,表明nZVI@HA对于水稻产量及 品质的提升作用不只是nZVI和HA的相加作用,而且 nZVI@HA材料还可通过独有方式作用于Cd污染土 壤修复过程中水稻籽粒营养物质合成及代谢。nZVI@HA vs CK组代谢集中166种特有差异代谢物共参与了水 稻籽粒43条代谢途径,其中包含丙氨酸、天冬氨酸和 谷氨酸代谢(map00250),核苷酸代谢(map01232),甘 氨酸、丝氨酸和苏氨酸代谢(map00260)、甘油磷脂代 谢(map00564)4条关键代谢通路(P<0.05 且影响因 子>0.1)(图6b)。如表1所示,4条关键代谢通路中分 别属于氨基酸代谢、核苷酸代谢及脂质代谢过程。拓

nZVI@HA(b)

扑分析结果表明,nZVI@HA可通过显著上调L-天门 冬氨酸、L-丝氨酸、腺苷琥珀酸、腺苷酸基丁二酸、 5'-单磷酸腺苷以及尿苷-5'-单磷酸6种特有差异代 谢物,参与水稻籽粒关键代谢路径。其中,L-天门冬 氨酸及L-丝氨酸作为水稻籽粒发育过程中的关键代 谢物,与稻米品质息息相关^[37-38]。研究结果表明,nZ-VI@HA通过这4条代谢通路促进关键代谢物的合成, 是Cd污染土壤修复过程中水稻产量及品质提升的关 键生物过程。

3 结论

(1)nZVI及nZVI@HA材料均可显著降低水稻籽

表1 nZVI@HA 特有代谢通路

Table 1 Special metabolic pathways of nZVI@HA

通路描述 Pathway description	第二类别 Second category	匹配状态 Match status	P值 P value	影响因子 Impact value
丙氨酸、天冬氨酸和 谷氨酸代谢	氨基酸代谢	2/28	0.017 6	0.291 3
核苷酸代谢	核苷酸代谢	4/56	0.000 7	0.133 2
甘氨酸、丝氨酸和苏 氨酸代谢	氨基酸代谢	2/47	0.043 8	0.127 2
甘油磷脂代谢	脂质代谢	4/52	0.000 5	0.111 0

粒中Cd含量,并明显提升水稻产量。尤其是在nZVI@HA 作用下,水稻产量显著提升至空白组的188%、籽粒 Cd含量降至0.155 mg·kg⁻¹,低于国家大米Cd限量标 准(0.2 mg·kg⁻¹,GB 2762—2022)。

(2)KEGG富集结果显示,nZVI及nZVI@HA材料 均可显著上调倍他林生物合成及精氨酸和脯氨酸代 谢途径。

(3)nZVI@HA可特异性地作用于水稻籽粒丙氨酸、天冬氨酸和谷氨酸代谢,核苷酸代谢,甘氨酸、丝氨酸和苏氨酸代谢及甘油磷脂代谢途径,进而实现Cd污染农田土壤上水稻产量及品质的提升。

参考文献:

- (1) 蔡美芳, 李开明, 谢丹平, 等. 我国耕地土壤重金属污染现状与防治 对策研究[J]. 环境科学与技术, 2014, 37(增刊2):223-230. CAI M F, LI K M, XIE D P, et al. The status and protection strategy of farmland soils polluted by heavy metals[J]. *Environmental Science and Technology*, 2014, 37(Suppl 2):223-230.
- [2] 中华人民共和国环境保护部,中华人民共和国国土资源部.全国土 壤污染状况调查公报[EB/OL]. (2014-04-17)[2023-12-8]. https:// www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. Ministry of Ecology and Environment of the People's Republic of China, Ministry of Land and Resources of the People's Republic of China. Report on the national general survey of soil contamination[EB/OL]. (2014-04-17)[2023-12-8]. https://www.mee.gov.cn/gkml/sthjbgw/qt/ 201404/t20140417_270670.htm.
- [3] 邹长伟, 江玉洁, 黄虹. 重金属镉的分布、暴露与健康风险评价研究 进展[J]. 生态毒理学报, 2022, 17(6):225-243. ZOU C W, JIANG Y J, HUANG H. Distribution, exposure and health risk assessment of heavy metal cadmium: a review[J]. Asian Journal of Ecotoxicology, 2022, 17(6):225-243.
- [4] 蔡秋玲,林大松,王果,等.不同类型水稻镉富集与转运能力的差异 分析[J]. 农业环境科学学报, 2016, 35(6):1028-1033. CAIQL, LIN D S, WANG G, et al. Differences in cadmium accumulation and transfer capacity among different types of rice cultivars[J]. Journal of Agro-Environment Science, 2016, 35(6):1028-1033.
- [5] 刘克,和文祥,张红,等. 镉在小麦各部位的富集和转运及籽粒镉含量的预测模型[J].农业环境科学学报,2015,34(8):1441-1448. LIU K, HE W X, ZHANG H, et al. Cadmium accumulation and translocation in wheat and grain Cd prediction[J]. Journal of Agro-Environment Science, 2015, 34(8):1441-1448.
- [6] 崔玉静,黄益宗,朱永官.镉对人类健康的危害及其影响因子的研究进展[J].卫生研究,2006,35(5):656-659. CUI Y J, HUANG Y Z, ZHU Y G. Adverse health effects of cadmium and related factors[J]. *Journal of Hygiene Research*, 2006, 35(5):656-659.
- [7] 葛兴彬, 王振虹, 郭楚奇, 等. 纳米零价铁的生态毒性效应研究进展
 [J]. 生态毒理学报, 2015, 10(3):28-37. GE X B, WANG Z H, GUO C Q, et al. Review of the ecotoxicity of nanoscale zero-valent iron[J]. *Asian Journal of Ecotoxicology*, 2015, 10(3):28-37.

- [8] SINGH R, MISRA V, SINGH R P. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 88 (2):210-214.
- [9] ZHOU W H, LIU F M, YI S P, et al. Simultaneous stabilization of Pb and improvement of soil strength using nZVI[J]. Science of the Total Environment, 2019, 651:877-884.
- [10] GUHA T, BARMAN S, MUKHERJEE A, et al. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice[J]. *Chemosphere*, 2020, 260:127533.
- [11] ZHOU P F, ZHANG P, HE M K, et al. Iron-based nanomaterials reduce cadmium toxicity in rice (*Oryza sativa* L.) by modulating phytohormones, phytochelatin, cadmium transport genes and iron plaque formation[J]. *Environmental Pollution*, 2023, 320: 121063.
- [12] GUHA T, MUKHERJEE A, KUNDU R. Nano-scale zero valent iron (nZVI) priming enhances yield, alters mineral distribution and grain nutrient content of Oryza sativa L. cv. gobindobhog: a field study[J]. Journal of Plant Growth Regulation, 2022, 41(2):710-733.
- [13] 高园园,周启星.纳米零价铁在污染土壤修复中的应用与展望[J]. 农业环境科学学报,2013,32(3):418-425. GAO Y Y, ZHOU Q
 X. Application of nanoscale zero-valent iron to contaminated soil remediation: a review[J]. Journal of Agro-Environment Science, 2013, 32 (3):418-425.
- [14] DE MELO B A G, MOTTA F L, SANTANA M H A. Humic acids: structural properties and multiple functionalities for novel technological developments[J]. *Materials Science and Engineering*: C, 2016, 62: 967–974.
- [15] LI H, SONG L, HAN B H, et al. Improved sludge dewaterability using persulfate activated by humic acid supported nanoscale zero-valent iron: effect on sludge characteristics and reaction mechanisms[J]. Environmental Science: Water Research and Technology, 2018, 4(10): 1480-1488.
- [16] VELIMIROVIC M, BIANCO C, FERRANTELLO N, et al. A largescale 3D study on transport of humic acid-coated goethite nanoparticles for aquifer remediation[J]. Water, 2020, 12(4):1207.
- [17] TAN H, WANG C, LI H, et al. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora[J]. *Chemosphere*, 2020, 242: 125251.
- [18] YANG J R, CHEN C X, CHEN W, et al. Proteomics and metabonomics analyses of Covid-19 complications in patients with pulmonary fibrosis[J]. Scientific Reports, 2021, 11(1):14601.
- [19] 马骏, 曼琼, 邓毅, 等. 代谢组学在中药七情配伍中的应用研究进展
 [J]. 中草药, 2020, 51(1):276-280. MA J, MAN Q, DENG Y, et al. Research progress of metabonomics in compatibility of seven emotions of Chinese materia medica[J]. *Chinese Traditional and Herbal Drugs*, 2020, 51(1):276-280.
- [20] 柴佳楦, 王学兵, 于南洋, 等. 基于质谱的高覆盖代谢组学数据采 集策略研究进展及在环境毒理学的应用[J]. 环境化学, 2023, 42
 (8):2549-2562. CHAIJX, WANGX B, YUNY, et al. Research progress of data acquisition strategies for mass spectrometrybased

农业环境科学学报 第43卷第4期

high-coverage metabolomics and its application in environmental toxicology[J]. *Environmental Chemistry*, 2023, 42(8):2549-2562.

- [21] 冯玉超, 王长远, 李雪, 等. 黑龙江省不同产地水稻的GC-MS代谢物差异分析[J]. 食品科学, 2019, 40(2):208-214. FENG Y C, WANG C Y, LI X, et al. Effect of geographical origin on rice metabolites as analyzed by gas chromatography-mass spectrometry[J]. Food Science, 2019, 40(2):208-214.
- [22] 邵常荣,张旸,解莉楠,等.植物对非生物逆境响应的转录调控和 代谢谱分析的研究进展[J]. 植物生理学报, 2011, 47(5):443-451.
 SHAO C R, ZHANG Y, XIE L N, et al. Progress in transcriptional regulation and metabolic profiling of plants response to abiotic stress[J]. *Plant Physiology Journal*, 2011, 47(5):443-451.
- [23] LAN Z N, HE Q, ZHANG M X, et al. Assessing the effects of cadmium stress on the growth, physiological characteristics, and metabolic profiling of rice (*Oryza sativa* L.) using HPLC-QTOF/MS[J]. *Chemo*sensors, 2023, 11(11):558.
- [24] STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI) : from synthesis to environmental applications[J]. *Chemi*cal Engineering Journal, 2016, 287:618–632.
- [25] 王萌, 陈世宝, 李杉杉, 等. 实验室与田间条件下骨炭粉与海藻肥对镉污染土壤修复效果评价[J]. 地学前缘, 2019, 26(6):82-88.
 WANG M, CHEN S B, LI S S, et al. Assessing the efficiencies of remediation of Cd contaminated soil by bone charcoal and seaweed fertilizer in pot and field experiments[J]. *Earth Science Frontiers*, 2019, 26(6):82-88.
- [26] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中镉的测定: GB 5009.15—2014[S]. 北京:中国标准出版社, 2015. National Health and Famliy Planning Commission of the People's Republic of China. National standards for food safety determination of cadmium in food: GB 5009.15—2014[S]. Beijing: China Standards Press, 2015.
- [27] 张洪江, 刘志涛, 王永红, 等. 含腐植酸复合肥料对水稻生长及镉吸收的影响[J]. 腐植酸, 2019(3):48-53. ZHANG H J, LIU Z T, WANG Y H, et al. Effects of compound fertilizer containing humic acid on growth and cadmium uptake of rice[J]. *Humic Acid*, 2019(3): 48-53.
- [28] GIL-DIAZ M, PINILLA P, ALONSO J, et al. Viability of a nanoremediation process in single or multi-metal (loid) contaminated soils[J]. *Journal of Hazardous Materials*, 2017, 321:812–819.
- [29] HAN Z W, SALAWU O A, ZENOBIO J E, et al. Emerging investigator series: immobilization of arsenic in soil by nanoscale zerovalent iron: role of sulfidation and application of machine learning[J]. *Environmental Science*: Nano, 2021, 8(3):619–633.

[30] 王哲, 赵燕妮, 陈丹, 等. 基于代谢组学研究不同花色种类云南白茶

中文核川期刊

的化学成分差异[J]. 食品科学, 2022, 43(22):221-231. WANG Z, ZHAO Y N, CHEN D, et al. Metabolomics analysis of difference in chemical components among different types of Yunnan white tea[J]. *Food Science*, 2022, 43(22):221-231.

- [31] 熊强强, 王润楠, 孙长辉, 等. 半糯粳稻与常规粳稻籽粒代谢物的 差异及氨基酸合成[J]. 分子植物育种, 2023, 21(14):4525-4534. XIONG Q Q, WANG R N, SUN C H, et al. Grain metabolite differences and amino acid synthesis of semi-glutinous japonica rice and conventional japonica rice[J]. *Molecular Plant Breeding*, 2023, 21(14): 4525-4534.
- [32] 张秀琼, 吴殿星, 袁名安, 等. 稻米脂类的功能特性及其生物调控
 [J]. 核农学报, 2019, 33(6):1105-1115. ZHANG X Q, WU D X,
 YUAN M A, et al. Functional characteristics of lipids in rice and its' biological regulation[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(6):1105-1115.
- [33] 朱艳霞, 魏幼璋, 叶正钱, 等. 有机酸在超积累植物重金属解毒机制中的作用[J]. 西北农林科技大学学报(自然科学版), 2006, 34(7):121-126. ZHUYX, WEIYZ, YEZQ, et al. Function of organic acids in heavy metal tolerance mechanism in hyperaccumulator
 [J]. Joural of Northwest Agriculture and Forestry University (Natural Science Edition), 2006, 34(7):121-126.
- [34] 梁昕昕, 辛亚平, 贾雪, 等. 宁夏枸杞幼苗叶片中抗氧化酶及游离 氨基酸对镉胁迫的响应[J]. 生态毒理学报, 2021, 16(6):222-233. LIANG X X, XIN Y P, JIA X, et al. Response of antioxidative enzymes activities and amino acids concentrations in leaf tissues of *Lycium barbarum* L. seedlings under cadmium stress[J]. Asian Journal of Ecotoxicology, 2021, 16(6):222-233.
- [35] 刘书锦,黄益宗,保琼莉,等.外源亚精胺对As⁵⁺胁迫下水稻种子 萌发和As吸收积累的影响[J].环境科学,2020,41(3):1505-1512. LIU S J, HUANG Y Z, BAO Q L, et al. Effects of exogenous spermidine on seed germination and as uptake and accumulation of rice under As⁵⁺ stress[J]. *Environmental Science*, 2020, 41(3):1505-1512.
- [36] 陈红凤, 马笑晴, 杨荣涛, 等. 6 种水稻初级代谢物对水稻抗瘟性的 影响[J]. 南方农业学报, 2022, 53(1):57-67. CHEN H F, MA X Q, YANG R T, et al. Effects of six metabolites on rice resistance to blast fungus, magnaporthe oryzae[J]. Journal of Southern Agriculture, 2022, 53(1):57-67.
- [37] XIONG Q Q, SUN C H, WANG R N, et al. The key metabolites in rice quality formation of conventional japonica varieties[J]. *Current Issues* in Molecular Biology, 2023, 45(2):990–1001.
- [38] ZHU J Y, LI A, SUN C H, et al. Rice quality-related metabolites and the regulatory roles of key metabolites in metabolic pathways of highquality semi-glutinous japonica rice varieties[J]. *Foods*, 2022, 11 (22):3676.

(责任编辑:李丹)

<u>740</u>