

中文核公期刊/CSCD

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

# 基于产量和N20排放的温室番茄灌溉模式

段琳博,蔡焕杰,孙亚楠,马静,杨楠

引用本文: 段琳博,蔡焕杰,孙亚楠,马静,杨楠.基于产量和N<sub>2</sub>O排放的温室番茄灌溉模式[J].农业环境科学学报,2024,43(1):202-213.

在线阅读 View online: https://doi.org/10.11654/jaes.2023-0194

# 您可能感兴趣的其他文章

Articles you may be interested in

# 水氮耦合对设施土壤N<sub>2</sub>O和NO排放的影响

吕金东,张丽媛,虞娜,邹洪涛,张玉玲,张玉龙 农业环境科学学报. 2021, 40(6): 1366-1376 https://doi.org/10.11654/jaes.2020-1217

# 有机无机肥配施对苹果园温室气体排放的影响

马艳婷,赵志远,冯天宇,SOMPOUVISETThongsouk,孔旭,翟丙年,赵政阳 农业环境科学学报. 2021, 40(9): 2039-2048 https://doi.org/10.11654/jaes.2020-1477

# 巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究

王天宇, 樊迪, 宋开付, 张广斌, 徐华, 马静 农业环境科学学报. 2021, 40(8): 1829-1838 https://doi.org/10.11654/jaes.2021-0181

# 清液肥对滴灌棉田NH<sub>3</sub>挥发和N<sub>2</sub>O排放的影响

王方斌, 刘凯, 殷星, 廖欢, 孙嘉璘, 闵伟, 侯振安 农业环境科学学报. 2020, 39(10): 2354-2362 https://doi.org/10.11654/jaes.2020-0067

不同改良剂对旱地苹果园温室气体排放的影响

李钊, 刘帅, 丁艳宏, 孙文浩, 高晓东, 赵西宁 农业环境科学学报. 2021, 40(1): 227-236 https://doi.org/10.11654/jaes.2020-0846



关注微信公众号,获得更多资讯信息

段琳博, 蔡焕杰, 孙亚楠, 等. 基于产量和N<sub>2</sub>O 排放的温室番茄灌溉模式[J]. 农业环境科学学报, 2024, 43(1): 202-213. DUAN L B, CAI H J, SUN Y N, et al. Greenhouse tomato yield and N<sub>2</sub>O emissions based on irrigation model[J]. *Journal of Agro-Environment Science*, 2024, 43(1): 202-213.



# 基于产量和 N<sub>2</sub>O 排放的温室番茄灌溉模式

段琳博<sup>1,2</sup>,蔡焕杰<sup>1,2\*</sup>,孙亚楠<sup>1,2</sup>,马静<sup>1,2</sup>,杨楠<sup>1,2</sup>

(1.西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100;2.西北农林科技大学旱区农业水土工程教育部重点实验室,陕西 杨凌 712100)

摘 要:为了揭示设施菜地 N<sub>2</sub>O 排放的变化规律,了解水肥气耦合对设施菜地土壤 N<sub>2</sub>O 的影响,对不同水肥气处理进行综合评价, 提出合理的减排措施。试验以番茄为供试作物,设置了灌水水平(1)、施肥水平(F)和加气水平(A)3个因素,以不加气(CK)充分灌 溉条件下 2 个施肥水平为对照,设置 I1 和12(分别为亏缺灌溉和充分灌溉,对应作物-皿系数(K<sub>ep</sub>)分别为0.8 和1.0)2 个灌水水平, F1和F2(分别为低肥和高肥,对应施氮量为 180 kg·hm<sup>-2</sup>和240 kg·hm<sup>-2</sup>)2 个施肥水平,A1 和 A2(分别为1倍气和2倍气)2 个加气水 平,共10 个处理。采用静态暗箱-气相色谱法对番茄全生育期 N<sub>2</sub>O 排放进行监测分析,系统研究水肥气耦合对温室番茄土壤 N<sub>2</sub>O 排放的影响及其影响因素。结果表明:灌水量和施肥量的增加均会增加土壤 N<sub>2</sub>O 排放通量,I2处理的 N<sub>2</sub>O 排放通量比 I1处理平均 增加 14.79%(P>0.05),F2处理比 F1处理平均增加 34.90%(P<0.05)。加气灌溉对土壤 N<sub>2</sub>O 排放通量有显著影响,与CK处理相比, A1 和 A2处理分别增加 10.02%(P>0.05)和62.92%(P<0.05)。土壤 N<sub>2</sub>O 排放通量与土壤充水孔隙度呈指数正相关关系,与 NO<sub>3</sub>-N 含量呈指数正相关关系,当土壤温度小于等于 26 ℃时,N<sub>2</sub>O 排放通量与土壤湿度呈指数正相关关系,土壤温度大于 26 ℃时,呈线 性负相关关系。综合考虑番茄产量、N<sub>2</sub>O 累积排放量、灌溉水分利用效率、氮肥偏生产力和单产 N<sub>2</sub>O 累积排放量,推荐施肥量为 180 kg·hm<sup>-2</sup>的 1倍气充分灌溉(K<sub>ep</sub>=1.0)为温室番茄增产、节水、减排的较佳灌溉模式。

关键词:N2O排放;水肥气耦合;温室番茄;土壤;灌水量;施肥量

中图分类号:S641.2;S626 文献标志码:A 文章编号:1672-2043(2024)01-0202-12 doi:10.11654/jaes.2023-0194

#### Greenhouse tomato yield and N2O emissions based on irrigation model

DUAN Linbo<sup>1,2</sup>, CAI Huanjie<sup>1,2\*</sup>, SUN Yanan<sup>1,2</sup>, MA Jing<sup>1,2</sup>, YANG Nan<sup>1,2</sup>

(1. College of Water Resources and Civil Engineering, Northwest A&F University, Yangling 712100, China; 2. Key Laboratory of Agricultural Soil and Water Engineering in Arid Regions of Ministry of Education, Northwest A&F University, Yangling 712100, China) **Abstract**: The objectives of this study were to investigate the changing patterns of N<sub>2</sub>O emissions from facility vegetable fields, understand the impact of water-fertilizer-gas coupling on soil N<sub>2</sub>O emissions, comprehensively evaluate different water-fertilizer-gas treatments, and propose effective measures for emission reduction. The experiment focused on tomatoes as the test crop, considering three factors : irrigation (I), fertilizer(F), and aeration(A) levels. Two fertilizer levels under full irrigation without aerated (CK) irrigation were set as the control. The study included two irrigation levels[I1 and I2: deficit irrigation and full irrigation, corresponding to crop-pan coefficients ( $K_{ep}$ ) of 0.8 and 1.0, respectively], two fertilization levels (F1 and F2: low and high fertilization, corresponding to N application rates of 180 kg · hm<sup>-2</sup> and 240 kg · hm<sup>-2</sup>, respectively), and two aeration levels (A1 and A2: 1 and 2 times gas, respectively), resulting in a total of 10 treatments. N<sub>2</sub>O emissions from greenhouse tomato soils were monitored and analyzed throughout the tomato reproductive period using a static dark

\*通信作者:蔡焕杰 E-mail:huanjie@tom.com

2024年1月

收稿日期:2023-03-16 录用日期:2023-05-11

作者简介:段琳博(1996一),男,河北邢台人,硕士研究生,主要研究方向为节水灌溉理论与新技术。E-mail:duanlb@nwafu.edu.cn

基金项目:国家自然科学基金项目(52179046)

Project supported: National Natural Science Foundation of China (52179046)

box-gas chromatography method. The aim was to investigate the effects of water-fertilizer-gas coupling on N<sub>2</sub>O emissions and analyze the influencing factors. The results indicated that increasing both irrigation water and fertilizer application led to an increase in soil N<sub>2</sub>O emission flux. The average N<sub>2</sub>O emission flux of the I2 treatment showed a 14.79% increase (P>0.05) compared to the I1 treatment, while the F2 treatment exhibited a 34.90% increase (P<0.05) compared to the F1 treatment. Aerated irrigation significantly affected soil N<sub>2</sub>O emission flux, with the A1 and A2 treatments showing a 10.02% (P>0.05) and 62.92% (P<0.05) increase, respectively, compared to the CK treatment. Overall, the soil N<sub>2</sub>O emission flux exhibited an exponential positive correlation when soil temperature was less than or equal to 26 °C, a linear negative correlation when soil temperature exceeded 26 °C, and an exponential positive correlation with NO<sub>3</sub>-N content. Based on considering tomato yield, cumulative N<sub>2</sub>O emissions, irrigation water use efficiency, nitrogen partial factor productivity, and cumulative N<sub>2</sub>O emissions per yield, the recommended irrigation mode for greenhouse tomatoes to optimize yield, water conservation, and emission reduction is 1-fold gas-sufficient irrigation ( $K_{ep}$ =1.0) with a fertilizer application rate of 180 kg·hm<sup>-2</sup>.

Keywords: N2O emission; water-fertilizer-air coupling; greenhouse tomato; soil; irrigation water; fertilizer application

温室气体排放增加导致辐射强迫增强和全球变 暖,影响极端天气事件,如极端温度、强降水和干旱变 化等,对人类生产生活产生巨大威胁。氧化亚氮 (N<sub>2</sub>O)是大气中重要的温室气体,IPCC第六次评估报 告指出,N<sub>2</sub>O在100年尺度上的全球增温潜势(Global Warming Potential,GWP)是CO<sub>2</sub>的273倍,因其增温效 应大而受到广泛关注<sup>[1]</sup>。农田生态系统是N<sub>2</sub>O排放的 主要来源,对全球气候变化产生重大影响,农业N<sub>2</sub>O 排放量占全球人为活动产生的78%<sup>[1]</sup>。随着社会的发 展和人们需求的提高,设施农业发展迅速,已经成为 现代农业生产的重要组成部分<sup>[2]</sup>,但是设施菜地施肥 量高且灌水频繁<sup>[3]</sup>,N<sub>2</sub>O大量排放加剧了温室效应,因 此,研究设施菜地N<sub>2</sub>O的排放规律和影响因素,提出 增产减排措施,对缓解全球变暖具有重要意义。

水肥气对土壤N2O排放具有重要影响,其主要是 通过影响土壤环境因子,如土壤湿度、土壤温度、土壤 矿物质氮浓度、土壤微生物群落多样性四等,进而对 土壤N2O排放产生影响。已有研究表明,土壤充水孔 隙度(WFPS)、土壤温度、NO3-N含量是影响土壤N2O 排放的重要因素,灌水量的变化,会改变土壤通气 性<sup>[5]</sup>,从而影响硝化和反硝化反应,改变N<sub>2</sub>O排放。苏 星源等10研究发现,灌水量增加会通过增加nirS基因 丰度来促进土壤反硝化进程,进而促进N<sub>2</sub>O排放。刘 丽君等[7]和李银坤等[8]研究发现,施氮量增加会增加 NH4-N和NO3-N含量,显著增加N2O排放,减少施肥 是降低土壤 N<sub>2</sub>O 排放最直接有效的措施。加气灌溉 可以缓解作物根区缺氧状况<sup>19</sup>,促进作物生长,提高 作物产量[10]。Chen等[11]和雷宏军等[12]研究发现,加气 灌溉会改善土壤通气状况,促进N<sub>2</sub>O排放。目前研究 大多集中于水、肥、气等单因子对土壤 N<sub>2</sub>O 排放的影 响,而对于水肥气三者交互作用对土壤N2O排放特征

缺乏系统研究,土壤环境因子对N2O排放的影响缺乏 系统分析。

番茄具有丰富的营养价值,其种植面积逐年增加,截至2020年,我国种植面积超过110万hm<sup>2[13]</sup>。本试验以设施番茄为对象,设置灌水水平、施肥水平和加气水平3个因素,研究水肥气耦合对番茄产量、N<sub>2</sub>O排放和土壤环境因子的影响,分析土壤环境因子与土壤N<sub>2</sub>O排放通量的关系,确定影响N<sub>2</sub>O排放的主要因子及其作用机制,综合考虑N<sub>2</sub>O累积排放量、灌溉水分利用效率、氮肥偏生产力和番茄产量等指标进行综合评价,提出优产、节水、减排的较佳灌溉模式,为设施菜地土壤N<sub>2</sub>O减排提供理论依据。

# 1 材料与方法

#### 1.1 试验区概况

试验在西北农林科技大学日光温室进行(34°20′ N,108°04′E)。土壤类型为塿土,属于棕壤土,1m土 层内平均土壤干容重为1.35g·cm<sup>-3</sup>,土壤密度为2.65 g·cm<sup>-3</sup>,土壤孔隙度为49.06%,田间持水量为23.8% (质量含水率)。番茄移植前测得0~20 cm深度层土 壤的有机质、全氮、全磷和全钾质量分数分别为9.51、 1.86、1.40g·kg<sup>-1</sup>和20.22g·kg<sup>-1</sup>,pH为7.65。土壤砂 粒(>0.05~1.00 mm)、粉砂颗粒(>0.005~0.05 mm)和 黏粒(<0.05 mm)分别占26.0%、33.0%和41.0%。

番茄全生育期气象数据如图1所示。温室内气 温与相对湿度基本呈相反趋势,气温和相对湿度分别 在14.26~32.27 ℃和37.76%~94.27%内波动;太阳辐 射和光合有效辐射变化趋势大致相同,分别在5.62~ 147.21 W·m<sup>-2</sup>和9.05~242.97 µmol·m<sup>-2</sup>·s<sup>-1</sup>内波动。

#### 1.2 试验设计

试验以温室番茄为供试作物(品种为"金鹏八

CCS 204



Figure 1 Dynamics of daily average air temperature, relative humidity, solar radiation and photosynthetically active radiation of greenhouse tomatoes during the reproductive period

号"),为2021年春夏茬,番茄于3月26日移植(三 叶一心至四叶一心),7月9日收获,全生育期共 105 d,生育期划分为苗期(0~30 d)、开花坐果期 (31~51 d)、果实膨大期(52~77 d)、成熟期(78~ 105 d)。

灌水方式为地下滴灌,滴头埋深15 cm,滴头间距 35 cm。每小区种植11株,番茄在滴头正上方进行移 苗,移苗当天进行漫灌,保证幼苗存活,之后进行覆 膜,小区之间垄宽40 cm,垄间设置深80 cm的塑料薄 膜,防止水分横向运移。

试验设置灌水水平(1)、施肥水平(F)和加气水平 (A)3个因素,以不加气(CK)充分灌溉条件下2个施 肥水平为对照,设置11和12[分别为亏缺灌溉和充分 灌溉,对应作物-皿系数(K<sub>ep</sub>)分别为0.8和1.0]2个灌 水水平,F1和F2(分别为低肥和高肥,对应施氮量为 180 kg·hm<sup>-2</sup>和240 kg·hm<sup>-2</sup>)2个施肥水平,A1和A2 (分别为1倍气和2倍气)2个加气水平,共10个处理, 具体见表1。每个处理3个重复,共30个小区,各小 区采用完全随机设计布设。

灌水定额由安置在温室内的E601型蒸发皿的蒸 发量确定,按两次灌水间隔内蒸发量值进行灌水,每

| Table 1 Design of experimental treatments |             |                                                 |                |  |  |
|-------------------------------------------|-------------|-------------------------------------------------|----------------|--|--|
| 处理                                        | 灌水水平        | 施肥水平                                            | 加气水平           |  |  |
| Treatment                                 | $K_{ m cp}$ | Fertilizer level/(kg $\cdot$ hm <sup>-2</sup> ) | Aeration level |  |  |
| A1F1I1                                    | 0.8         | 180                                             | 1倍气            |  |  |
| A1F2I1                                    | 0.8         | 240                                             | 1倍气            |  |  |
| A1F1I2                                    | 1.0         | 180                                             | 1倍气            |  |  |
| A1F2I2                                    | 1.0         | 240                                             | 1倍气            |  |  |
| A2F1I1                                    | 0.8         | 180                                             | 2倍气            |  |  |
| A2F2I1                                    | 0.8         | 240                                             | 2倍气            |  |  |
| A2F1I2                                    | 1.0         | 180                                             | 2倍气            |  |  |
| A2F2I2                                    | 1.0         | 240                                             | 2倍气            |  |  |
| CKF1I2                                    | 1.0         | 180                                             | 不加气            |  |  |
| CKF2I2                                    | 1.0         | 240                                             | 不加气            |  |  |

表1 试验处理设计

次灌水在当天早上8:00进行。小区灌水定额如式(1)<sup>[14]</sup>:

 $W = K_{\rm cp} \cdot E_{\rm pan} \cdot A \cdot n \tag{1}$ 

式中:W为灌水定额,L;K<sub>ep</sub>为作物-皿系数,l1和12处 理分别取0.8和1.0;E<sub>pan</sub>为两次灌水时间间隔内的蒸 发量,mm;A为单个滴头的控制面积,本试验中为 0.14m<sup>2</sup>(0.35m×0.4m)<sup>[15]</sup>;n为小区滴头个数,为11个。

利用 Mazzei 287 型文丘里计 (Mazzei Injector

Company,LLC,美国)作为加气设备进行加气,加入的 气体为空气。灌水时通过水泵形成加压灌溉水,同时 调节灌水总管道末端调节阀,保证进口压力为0.1 MPa,出口压力为0.02 MPa,由排气法得到进气量约 占灌溉水量的17%<sup>[16]</sup>。

供试氮肥为尿素(含N质量分数>46%),钾肥为 硫酸钾(含K质量分数>52%,240 kg·hm<sup>-2</sup>),磷肥为过 磷酸钙(含P<sub>2</sub>O<sub>5</sub>质量分数>16%,150 kg·hm<sup>-2</sup>),菌肥为 羊板球(5312.5 kg·hm<sup>-2</sup>),其中磷、钾肥和菌肥全部基 施,氮肥的30%作为基肥,剩余氮肥通过施肥泵将水 溶肥通过滴灌管输送到植株根部,追肥时间分别在移 植后第27、54、68、95天,施肥比例为1:2:2:2。

灌溉用水由与水泵相连的桶提供,灌溉间隔为 3~6 d,本试验全生育期总蒸发量为213.10 mm,I1 和 12处理的单个小区灌溉定额分别为262.66 L 和 328.10 L(表2)。

# 1.3 测量指标

1.3.1 WFPS与土壤温度

土壤含水率:每次取气同时用土钻在小区的首、

#### 表2 番茄全生育期灌水定额

Table 2 Irrigation amount of tomato during the

| whole growth period |                             |                  |                |                |  |  |
|---------------------|-----------------------------|------------------|----------------|----------------|--|--|
| 灌水时间                | 移植后天数                       | 两次灌水期间蒸发量        | 灌水短            | E额/L           |  |  |
| Irrigation<br>time  | Days after<br>transplanting | 2 irrigations/mm | $K_{cp} = 0.8$ | $K_{cp} = 1.0$ |  |  |
| 2021-04-15          | 20                          | 9.4              | 11.59          | 14.47          |  |  |
| 2021-04-19          | 24                          | 9.3              | 11.46          | 14.32          |  |  |
| 2021-04-22          | 27                          | 2.3              | 2.83           | 3.54           |  |  |
| 2021-04-28          | 33                          | 5.0              | 6.16           | 7.70           |  |  |
| 2021-05-01          | 36                          | 11.4             | 14.05          | 17.55          |  |  |
| 2021-05-05          | 40                          | 9.4              | 11.59          | 14.47          |  |  |
| 2021-05-10          | 36                          | 18.5             | 22.80          | 28.48          |  |  |
| 2021-05-14          | 49                          | 13.0             | 16.02          | 20.02          |  |  |
| 2021-05-19          | 54                          | 10.9             | 13.43          | 16.78          |  |  |
| 2021-05-24          | 59                          | 10.6             | 13.07          | 16.32          |  |  |
| 2021-05-29          | 64                          | 14.7             | 18.12          | 22.63          |  |  |
| 2021-06-02          | 68                          | 13.2             | 16.27          | 20.32          |  |  |
| 2021-06-06          | 72                          | 12.3             | 15.16          | 18.94          |  |  |
| 2021-06-11          | 77                          | 13.7             | 16.89          | 21.09          |  |  |
| 2021-06-16          | 82                          | 10.0             | 12.33          | 15.40          |  |  |
| 2021-06-22          | 88                          | 14.6             | 18.00          | 22.48          |  |  |
| 2021-06-28          | 94                          | 12.4             | 15.28          | 19.09          |  |  |
| 2021-06-29          | 95                          | 1.7              | 2.10           | 2.62           |  |  |
| 2021-07-04          | 100                         | 11.5             | 14.17          | 17.71          |  |  |
| 2021-07-08          | 104                         | 9.2              | 11.34          | 14.16          |  |  |
| 总计                  | —                           | 213.1            | 262.66         | 328.10         |  |  |

中、尾端两棵植株间3点取土,深度为0~20 cm,使其 充分混合作为该小区的土样,土壤含水率采用烘干法 (105℃,12 h)测量;

WFPS的计算公式如下:

$$A_{\rm WFPS} = \theta \times \frac{r}{1 - r/\rho} \tag{2}$$

式中: $A_{\text{WFPS}}$ 为土壤充水孔隙度,%; $\theta$ 为土壤质量含水 率;r为土壤干容重, $g \cdot \text{cm}^{-3}$ ; $\rho$ 为土壤密度,2.65 g· cm<sup>-3</sup>;

土壤温度:用曲管式地温计(河北省武强红星仪 表厂)测定土壤10 cm处温度。

1.3.2 土壤 N<sub>2</sub>O 排放量测定

本试验采用"静态暗箱-气相色谱法"测定番茄 全生育期土壤 N<sub>2</sub>O 排放通量,箱体用 2 mm 钢板材料 制成,长、宽、高分别为25、25 cm 和 40 cm。箱体外表 面用海绵与锡箔纸包裹。番茄移植当天在小区中央 两棵幼苗之间预埋方形底座,底座嵌入土壤5 cm 深, 底座上端有大约3 cm 深的凹槽,用以放置静态箱箱 体,取样时注水密封。生育期采样间隔3~6 d,追肥后 进行加测。气体取样时间分别为10:00、10:10、10: 20 和 10:30,利用带有三通阀的50 mL注射器进行4 次气体采集,每次取气30 mL,并在当天进行浓度分 析。气体采样的同时用安插在箱体顶部的电子温度 计(TA288)测量箱内温度,用以计算气体排放通量。 去除奇异点,保证4个样品浓度测量值与时间的线性 回归决定系数(*R*<sup>2</sup>)≥0.90。

N<sub>2</sub>O浓度采用安捷伦气相色谱仪测定(Agilent Technologies 7890A GC System,美国),气体排放通量 采用式(3)计算:

$$F = \rho h \times \frac{273}{273 + T} \times \frac{dc}{dt}$$
(3)

式中:F为N<sub>2</sub>O气体排放通量,µg·m<sup>-2</sup>·h<sup>-1</sup>; $\rho$ 是标准状态下气体密度,g·cm<sup>-3</sup>;h为箱体的高度,m; $\frac{dc}{dt}$ 为气体浓度变化率,µg·m<sup>-3</sup>·h<sup>-1</sup>;T为箱内温度,℃。

番茄全生育期内土壤N<sub>2</sub>O累积排放量通过式(4) 计算:

$$R = \sum_{i=1}^{n} \frac{F_i + F_{i+1}}{2} \times D \times 24$$
(4)

式中:R为土壤 N<sub>2</sub>O 累积排放量, $kg \cdot hm^{-2}$ ;F为土壤 N<sub>2</sub>O 气体排放通量;D为相邻两次测定间隔时间,d;i 为第i次测定;n为测定次数。

1.3.3 土壤 NO3-N 质量分数

土壤硝态氮质量分数:取气的同时用土钻取小区

0~20 cm 深土样, 土样研磨后过 2 mm 筛, 称取 5.00 g 土样,用50 mL2 mol·L<sup>-1</sup> KCl 溶液浸提,振荡30 min 过滤,用连续流动分析仪(Auto Analyzer 3AA3,德国, 0.001AUFS)测定土壤NO3-N含量。土壤NO3-N质量 分数计算公式如下:

$$M = \frac{1\ 000 \times C \times V}{W} \tag{5}$$

式中:M为待测样品NO<sub>3</sub>-N质量分数,mg·kg<sup>-1</sup>;C为待 测样品的 $NO_{3}$ -N浓度,mg·L<sup>-1</sup>;V为待测样品提取液的 体积,0.05 L;W为待测样品质量,5.00 g。

1.3.4 番茄产量和灌溉水分利用效率

番茄成熟后,每小区选取长势均匀的5株进行测 产,取均值作为该小区的单株产量,并换算为总产量 (t·hm<sup>-2</sup>)。灌溉水分利用效率(Irrigation water use efficiency, IWUE)为蕃茄产量与全生育期单个小区总灌 水量的比值。

1.3.5 氮肥偏生产力

氮肥偏生产力(Nitrogen partial factor productivity,NPFP)为作物产量与施氮量的比值[17]。

1.3.6 单产N<sub>2</sub>O 累积排放量

单产N<sub>2</sub>O累积排放量为生产单位番茄所释放的  $N_{2}O$ ,表示为土壤 $N_{2}O$ 累积排放量与作物产量的比值。

1.4 数据处理与分析

采用 Excel 2016 对实验数据进行整理和初步分 析,采用SPSS 26.0 对实验数据进行显著性分析和方 差分析,不同处理间采用最小显著性差异法(Leastsignificant difference,LSD)进行检验;对土壤 N<sub>2</sub>O 排放 通量和土壤环境因子进行皮尔逊相关分析和回归分 析;采用SPSS Pro软件运用Topsis 熵权法,综合番茄 产量、IWUE、土壤 N<sub>2</sub>O 累积排放量、NPFP 和单产 N<sub>2</sub>O 累积排放量,对温室番茄进行综合评价。用Origin Pro 2021 绘图。

#### 2 结果与分析

#### 2.1 土壤 N<sub>2</sub>O 排放动态变化特征

如图2所示,不同处理温室番茄土壤 N<sub>2</sub>O 排放通 量变化趋势一致,均随移植后天数增加呈波动性变 化,总体表现为先增加后减小的趋势。番茄全生育期 内,N<sub>2</sub>O排放通量在14.94~279.59 µg·m<sup>-2</sup>·h<sup>-1</sup>内变化, 施肥引起N2O排放峰值的出现,分别表现在移植后第 28、55、69、96天,其中主峰值在果实膨大期,为移植 后第69天,最大值出现在A2F2I2处理,为279.60 μg· m<sup>-2</sup>·h<sup>-1</sup>,比A2F2I1、A2F1I2、A1F2I2和CKF2I2分别高

# 农业环境科学学报 第43卷第1期

4.12%、49.87%、29.99%和36.29%,施肥和加气对峰值 影响显著(P<0.05),灌水对其影响不显著(P>0.05)。 相同施肥和加气水平下,随灌水量增加,N2O排放通量 增加,但差异不显著(P>0.05),12处理的N<sub>2</sub>O排放通量 比11处理平均增加14.79%;在灌水和加气水平一致的 条件下,随施肥量增加,N<sub>2</sub>O排放通量显著增加(P< 0.05),F2处理较F1处理平均增加34.90%;在相同灌 水和施肥水平下,加气灌溉会增加N2O排放通量,与 CK处理相比,A1处理平均增加10.02%(P>0.05),A2 处理平均显著增加了62.92%(P<0.05)。

番茄土壤 N<sub>2</sub>O 排放通量在不同生育期表现出明 显的差异,苗期的N<sub>2</sub>O排放通量值较低,这可能是此 时土壤温度较低造成的,随移植后天数的增加,番茄 植株逐渐生长壮大,N2O排放通量呈现出增长的趋 势,在果实膨大期达到顶峰,成熟期又降到较低水平。

# 2.2 土壤环境因子变化趋势

番茄生育期内,各处理土WFPS、温度和NO<sub>5</sub>-N质 量分数的动态变化如图3所示。WFPS会影响 N<sub>2</sub>O 的 排放,如图3a和图3b所示,番茄全生育期内,WFPS 在39.18%~55.78%范围内变化。由于地膜覆盖的保 墒作用,以及生育前期温度较低,在移植后70 d之前, WFPS维持在较高水平。在果实膨大期后期(70~78 d)WFPS急剧下降,主要是由于此阶段的作物耗水量 较大,且此时的温度较高,蒸发量较大。不同处理的 WFPS变化趋势基本一致,I2处理较I1处理高1.66% (P>0.05),施肥量的不同没有引起WFPS的显著变 化,加气灌溉会降低WFPS,与CK处理相比,A1处理 降低 1.72% (P>0.05), A2 处理降低 3.33% (P>0.05)。 不同处理间土壤温度变化趋势一致,不同的水肥气处 理并没有引起土壤温度的显著变化(P>0.05),土壤温 度与大气温度变化一致,在16.6~31.9℃范围内变化。

番茄全生育期不同处理的NO3-N变化趋势一致, 由图 3e 和图 3f 可知,追肥后 NO<sub>3</sub>-N 质量分数明显上 升,施氮量增加显著增加NO3-N质量分数(P<0.05), F2处理较F1处理增加30.88%(P<0.05);灌水量和加 气的变化没有引起NO5-N含量的显著变化(P>0.05)。

# 2.3 土壤 N<sub>2</sub>O 排放影响因子分析

有诸多研究证实,土壤湿度与土壤温度是影响土 壤 N<sub>2</sub>O 排放的主要因素,但是不同番茄品种、不同的 田间管理措施、作物生长过程中的气温等诸多因素均 会影响土壤温室气体的排放,导致主要影响因子的改 变,因此本研究通过皮尔逊线性相关分析和回归分 析,对土壤N2O排放通量与土壤环境因子进行分析,



Figure 2 Dynamic variation characteristics of soil N<sub>2</sub>O emission fluxes under the coupling of water, fertilizer and air

确定影响温室气体排放的主要因子,解释温室番茄土 壤 N<sub>2</sub>O 排放的原因。

数据分析结果显示,土壤N<sub>2</sub>O排放通量与WFPS、 土壤温度和NO5-N质量分数均有极显著线性正相关 关系(P<0.01),相关系数分别为0.305、0.196和0.552。 对数据进行进一步挖掘,发现5月2日(移植37d后) 之前的N2O排放通量和土壤温度都很低,可能是土壤 温度很低影响了土壤微生物的活性,进而影响了N<sub>2</sub>O 排放,因此剔除这一部分数据,再次拟合分析,结果显 示土壤 N<sub>2</sub>O 排放通量与 WFPS 呈指数正相关关系(图 4a),决定系数为0.601,解释了N<sub>2</sub>O排放的60.1%。同 样剔除掉5月2日之前土壤温度为主要影响因素的部 分,线性回归方程显示(图4b),土壤N2O排放通量与 NO3-N呈指数正相关关系,决定系数为0.663,解释了 N<sub>2</sub>O 排放的 66.3%。生育期内总数据分析结果显示, N<sub>2</sub>O 排放通量与土壤温度呈极显著线性正相关关系, 但是相关系数较小,土壤 N<sub>2</sub>O 排放通量随土壤温度的 升高,出现明显的先增加后减小的趋势。进一步以土 壤温度 26.0 ℃为界分段进行拟合,如图 4c 和图 4d 所

示。当土壤温度小于等于26.0℃时,土壤N<sub>2</sub>O排放与 土壤温度呈现指数正相关关系,且达到显著水平,决 定系数为0.408,解释了N<sub>2</sub>O排放的40.8%;当土壤温 度大于26.0℃时,土壤N<sub>2</sub>O排放通量与土壤温度呈线 性负相关关系,决定系数为0.174,解释了N<sub>2</sub>O排放的 17.4%。

# 2.4 水肥气耦合对番茄产量、单产N<sub>2</sub>O累积排放量的 影响及综合分析

由表3所示,灌水、施肥和加气单因子均对番茄 产量具有极显著影响(P<0.01),在相同施肥和加气条 件下,12处理番茄产量比11处理平均增加18.50%;相 同灌水和加气水平条件下,F2处理比F1处理的番茄 产量平均增加11.95%;相同灌水和施肥水平条件下, A1和A2处理分别比CK处理的番茄产量平均增加 16.99%和23.70%,A2处理比A1处理番茄产量平均 增加4.49%(P>0.05)。

灌水、施肥和加气单因子均对IWUE和NPFP有极显著影响(P<0.01),但是各交互作用对其无显著影响。灌水量增加,IWUE减小,NPFP增加,相同施肥



Figure 3 Dynamic variation characteristics of WFPS, soil temperature and NO<sub>3</sub>-N content under the coupling of water, fertilizer and air

和加气水平下, I2处理的 IWUE 较 I1 处理平均降低 5.15%(P<0.05), NPFP平均增加 18.50%(P<0.05);施 肥量增加会增加 IWUE,降低 NPFP,相同灌水和加气 水平下, F2处理的 IWUE 较 F1处理平均增加 11.95% (P<0.05), NPFP平均降低 16.04%(P<0.05);加气处理 会提高 IWUE 和 NPFP,相同灌水和施肥水平下,与 CK处理相比, A1处理的 IWUE 和 NPFP分别平均提高 16.99% 和 16.99%(P<0.05), A2处理平均提高 23.71% 和 23.72%(P<0.05)。

灌水、加气和施肥水平的差异变化均会显著影响 N<sub>2</sub>O累积排放量(P<0.05),三者的增加均增加N<sub>2</sub>O累 积排放量。但是只有 A2F1I2 与 A2F1I1 处理表现出 灌水量的增加使单产 N<sub>2</sub>O 累积排放量增加,其余 I2 处 理的单产 N<sub>2</sub>O 累积排放量均小于 I1 处理,说明生产单 位产量番茄所排放的 N<sub>2</sub>O 减少,I2 水分处理更加符合 减排理念。

综上可知,番茄产量和N<sub>2</sub>O排放受到众多指标影响,各指标的最佳处理并不统一,因此综合番茄产量和N<sub>2</sub>O排放的相关指标进行评价。Topsis熵权法综合评价结果表明(表3),排序第1的是A1F112处理,因此,综合番茄产量、N<sub>2</sub>O累积排放量、IWUE、NPFP和单产N<sub>2</sub>O累积排放量指标,推荐施氮量为180 kg·hm<sup>-2</sup>



图4 土壤 N<sub>2</sub>O 排放通量与 WFPS、NO3-N质量分数和土壤温度的关系

Figure 4 Relationship between soil N<sub>2</sub>O emission flux and WFPS, soil NO<sub>3</sub>-N content and soil temperature

| 7                                  | 友 3 小 加 乁 枘 ㄧ 笛       | 加厂里 丁 上 氓 N20         | ff 加及共怕大家          | 响凶丁                |                |
|------------------------------------|-----------------------|-----------------------|--------------------|--------------------|----------------|
| Table 3 Yield and N <sub>2</sub> O | emission of water. fo | ertilizer, and gas co | unled tomato and t | heir related influ | encing factors |

北町乍畑へ釆井立昌ヒ土痘NA批サルサロナ以応国ス

| Table 5 Trold and 120 clinision of water, fertilizer, and gas coupled tomato and then related influencing factors |                                       |                                                                                           |                                                                     |                                                                          |                                                                                                                |                                    |            |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|------------|
| 项目<br>Item                                                                                                        | 产量<br>Yield/<br>(t・hm <sup>-2</sup> ) | N <sub>2</sub> O 累积排放量<br>Cumulative N <sub>2</sub> O emission/<br>(kg•hm <sup>-2</sup> ) | 灌溉水分利用效率<br>Irrigation water use<br>efficiency/(g·L <sup>-1</sup> ) | 氮肥偏生产力<br>Nitrogen partial factor<br>productivity/(kg・kg <sup>-1</sup> ) | 单产 N <sub>2</sub> O 累积排放量<br>Yield-scaled N <sub>2</sub> O<br>intensity/(10 <sup>-3</sup> kg·t <sup>-1</sup> ) | 综合得分指数<br>Composite<br>score index | 排序<br>Sort |
| A1F1I1                                                                                                            | 40.08e                                | 0.98h                                                                                     | 48.84cd                                                             | 222.69c                                                                  | 24.53d                                                                                                         | 0.492                              | 5          |
| A1F2I1                                                                                                            | 44.85cd                               | 1.28f                                                                                     | 54.64ab                                                             | 186.85d                                                                  | 28.78c                                                                                                         | 0.456                              | 6          |
| A1F1I2                                                                                                            | 46.59c                                | 1.11g                                                                                     | 45.44de                                                             | 258.86b                                                                  | 23.91d                                                                                                         | 0.642                              | 1          |
| A1F2I2                                                                                                            | 53.30a                                | 1.51d                                                                                     | 51.99bc                                                             | 222.09c                                                                  | 28.34c                                                                                                         | 0.633                              | 2          |
| A2F1I1                                                                                                            | 41.86de                               | 1.43e                                                                                     | 51.00bc                                                             | 232.55e                                                                  | 34.17b                                                                                                         | 0.437                              | 8          |
| A2F2I1                                                                                                            | 46.51c                                | 1.95b                                                                                     | 56.67a                                                              | 193.81d                                                                  | 41.98a                                                                                                         | 0.364                              | 10         |
| A2F1I2                                                                                                            | $50.03\mathrm{b}$                     | 1.75c                                                                                     | 48.79cd                                                             | 277.94a                                                                  | 35.07b                                                                                                         | 0.620                              | 3          |
| A2F2I2                                                                                                            | 55.52a                                | 2.24a                                                                                     | 54.15ab                                                             | 231.35c                                                                  | 40.33a                                                                                                         | 0.528                              | 4          |
| CKF1I2                                                                                                            | 40.37e                                | 1.01h                                                                                     | 39.37f                                                              | 224.25c                                                                  | 24.97d                                                                                                         | 0.449                              | 7          |
| CKF2I2                                                                                                            | 44.96cd                               | 1.34f                                                                                     | 43.85e                                                              | 187.33d                                                                  | 29.92c                                                                                                         | 0.375                              | 9          |
| 权重                                                                                                                | 0.28                                  | 0.14                                                                                      | 0.13                                                                | 0.28                                                                     | 0.17                                                                                                           |                                    |            |
| 灌水I                                                                                                               | 113.43**                              | 273.56**                                                                                  | 10.75**                                                             | 128.84**                                                                 | 0.52                                                                                                           |                                    |            |
| 施肥F                                                                                                               | 53.53**                               | 902.81**                                                                                  | 52.54**                                                             | 151.25**                                                                 | 88.50**                                                                                                        |                                    |            |
| 加气A                                                                                                               | 48.84**                               | 1 278.70**                                                                                | 39.93**                                                             | 55.85**                                                                  | 185.78**                                                                                                       |                                    |            |
| I×F                                                                                                               | 0.85                                  | 1.07                                                                                      | 0.02                                                                | 0.42                                                                     | 0.89                                                                                                           |                                    |            |
| I×A                                                                                                               | 0.54                                  | 19.05**                                                                                   | 0.16                                                                | 0.72                                                                     | 0.02                                                                                                           |                                    |            |
| F×A                                                                                                               | 0.43                                  | 19.56**                                                                                   | 0.35                                                                | 0.60                                                                     | 1.55                                                                                                           |                                    |            |
| I×F×A                                                                                                             | 0.13                                  | 4.76*                                                                                     | 0.10                                                                | 0.26                                                                     | 1.19                                                                                                           |                                    |            |

注:同列不同小写字母表示不同处理间差异显著(P<0.05)。

Note: Different lowercase letters in the same column indicate significant differences between different treatments (P<0.05).

<u>210</u>

的1倍气充分灌溉(K<sub>ep</sub>=1.0)为温室番茄增产、节水、 减排较佳的灌溉模式。

#### 3 讨论

### 3.1 水肥气耦合对土壤 N<sub>2</sub>O 排放的影响

番茄全生育期 N<sub>2</sub>O 排放通量呈现先增加后减小的趋势,呈现出倒"V"形。番茄苗期 N<sub>2</sub>O 排放量较低, 但有研究得出不同结果<sup>[18]</sup>,在番茄种植初期土壤 N<sub>2</sub>O 排放通量较高,因为基施肥量较大,灌水后 N<sub>2</sub>O 大量 排放,但是定植后是漫灌,使得土壤表面较湿,不具备 气体采集条件,导致大量 N<sub>2</sub>O 已经逸出,因此测得番 茄苗期的 N<sub>2</sub>O 排放量较低,加之苗期的土壤温度较 低,抑制了土壤微生物的活性,降低了 N<sub>2</sub>O 排放。追 肥为土壤提供了充足氮源,为硝化和反硝化细菌提供 了充足的反应底物,促进了 N<sub>2</sub>O 的排放,如图 2 所示, 追肥后会显著增加 N<sub>2</sub>O 的排放,出现明显峰值;而在 番茄开花坐果期,出现持续时间长的 N<sub>2</sub>O 高排放,这 是因为苗期 N<sub>2</sub>O 排放量低,大量的 NO<sub>3</sub>-N 还在土壤中 (图 3),随着土壤温度的升高,NO<sub>3</sub>-N 逐渐在微生物 作用下转化为 N<sub>2</sub>O,N<sub>2</sub>O 排放出现峰值。

土壤 N<sub>2</sub>O 排放主要是由好氧条件下的硝化过程 和厌氧条件下的反硝化过程产生的[19]。灌溉是影响 N<sub>2</sub>O 排放的重要因素,频繁灌溉为硝化和反硝化作用 创造了有利条件,导致硝化反应和反硝化反应交替进 行,从而促进了N<sub>2</sub>O的排放<sup>[20-21]</sup>。本试验是在春夏茬, 蒸发大,灌水频繁,土壤干湿交替,促进了土壤N₂O排 放。灌水会显著影响N<sub>2</sub>O排放,过度亏缺灌溉和过度 充分灌溉均不利于土壤微生物的繁衍[22],从而会降低 N<sub>2</sub>O排放。在本试验中,灌水量的增加会提高N<sub>2</sub>O的 排放,这与杜世宇等[2]的研究结果一致。首先,充分 灌溉处理会增加土壤微生物活性,促进N<sub>2</sub>O排放;其 次,灌水量的增加会增强土壤呼吸[24],加速土壤中氧 气的消耗,促进厌氧环境的形成,厌氧程度直接影响 反硝化酶的合成和反硝化作用<sup>[25]</sup>,进而增加N<sub>2</sub>O排 放,有关研究表明,虽然土壤硝化反应和反硝化反应 同时发生,但反硝化过程更有利于产生N<sub>2</sub>O<sup>[26]</sup>。

施肥是影响 N<sub>2</sub>O 排放的决定性因素之一<sup>[27]</sup>,施肥 直接为硝化反应和反硝化反应提供反应底物,促进 N<sub>2</sub>O 排放,同时,当施氮量超过作物所需时,剩余的氮 源会被土壤微生物利用,加剧 N<sub>2</sub>O 的排放。本试验 中,高肥处理的 N<sub>2</sub>O 排放量更高的结果与以往研究结 果一致,但是在相同施肥量和加气量下,灌水量增加, N<sub>2</sub>O 排放通量变化不显著,可能是因为施肥和加气促

#### 农业环境科学学报 第43卷第1期

进N2O排放比较显著,使灌水对其的影响被掩盖。

在本试验中,与不加气灌溉相比,加气灌溉会显 著增加 N<sub>2</sub>O 排放<sup>[28]</sup>,改善土壤通气性,缓解地下滴灌 造成的缺氧状况<sup>[5]</sup>,提高土壤酶活性<sup>[29]</sup>和土壤微生物 数量<sup>[30]</sup>,促进硝化反应,同时促进土壤呼吸,消耗氧 气,促进反硝化反应,因此,加气灌溉会同时促进硝化 和反硝化反应,促进 N<sub>2</sub>O 的排放。

### 3.2 土壤环境因子对土壤 N<sub>2</sub>O 排放的影响分析

土壤湿度、土壤温度和NO3-N是影响土壤N2O排 放的重要因素,其通过影响硝化和反硝化过程来影响 N2O排放<sup>[31]</sup>。目前,土壤N2O与WFPS的关系研究结 论不尽相同。在奚雅静等<sup>[32]</sup>的研究中,温室番茄土壤 N2O与WFPS呈极显著的对数函数关系,且峰值出现 在WFPS为60%~80%内;前人研究发现N2O排放与 WFPS呈指数正相关<sup>[33-34]</sup>;本试验中,N2O排放与WF-PS呈指数正相关,但是剔除了移植后37 d之前的数 据,因为37 d之前,土壤温度低,最高温度是21.3 ℃ (图4),低温导致土壤微生物活性低,最终导致N2O排 放量低,在此阶段,土壤温度是影响N2O的主要因子, WFPS和NO3-N质量分数对N2O排放的影响被土壤 温度的影响效果所掩盖。

追肥会增加土壤中NO3-N质量分数,促进反硝 化过程,提高N2O排放,剔除掉因为土壤温度较低的 数据(37 d之前),NO3-N质量分数与N2O排放呈指数 正相关关系,这与杜娅丹等<sup>[33]</sup>的研究结果一致,说明 过量的氮源会以N2O的形式损失,因此可以通过控制 施氮量来降低N2O排放。此外,在奚雅静等<sup>[32]</sup>的研究 中,相同施氮量下,有机肥部分代替氮肥会有效降低 N2O排放,同时还会提高番茄产量,因此,实际生产 中,还可以通过有机肥部分代替氮肥来降低N2O排 放,实现番茄的增产减排。

土壤温度是影响土壤N<sub>2</sub>O排放的重要因素,一方 面土壤温度通过影响土壤酶活性和土壤微生物活性 而影响硝化和反硝化速率,进而影响N<sub>2</sub>O排放;另一 方面,土壤温度通过影响微生物活动改变土壤氧气和 有效性碳的含量<sup>[35-36]</sup>,进而影响N<sub>2</sub>O排放,并且土壤温 度还影响土壤溶液中氧气的吸收与释放<sup>[37]</sup>。有研究 指出当土壤温度在10~35℃时,土壤反硝化生物活性 可提高1.5~3.0倍<sup>[38]</sup>,这解释了本试验中番茄苗期N<sub>2</sub>O 排放量低的现象。土壤温度与土壤N<sub>2</sub>O排放的关系, 前人研究结果并不一致。在郑循华等<sup>[39]</sup>的研究中, N<sub>2</sub>O排放通量随土壤温度的变化呈正态分布,大量研 究表明<sup>[40]</sup>,温度升高会促进N<sub>2</sub>O的排放;但是也有研

究表明[41],土壤 N<sub>2</sub>O 排放与土壤温度呈负相关关系, 这是因为春夏季试验温度不断升高,且只施基肥,因 此N2O在整个生育期中呈不断下降趋势。在某些特 定土壤环境中,土壤温度对N2O排放的影响作用亦可 被其他环境因子所掩盖。Han 等[42]研究了不同灌水 量对土壤 N<sub>2</sub>O 排放的影响,结果表明土壤温度并非影 响 N<sub>2</sub>O 排放的主要影响因子,其作用被水分的影响效 果所掩盖。在本试验中,土壤温度在小于26.0℃时, N<sub>2</sub>O 排放通量与土壤温度呈指数正相关关系,主要是 受到NO5-N质量分数的影响,由图4可知,生育前期 NO<sub>5</sub>-N质量分数高,N<sub>2</sub>O排放通量随着温度升高逐渐 变大,两者呈正相关关系:土壤温度大于26℃时,N<sub>2</sub>O 排放通量与土壤温度呈线性负相关关系,此阶段大部 分数据处于生育后期,生育后期NO3-N质量分数逐 渐减少,且此时的WFPS已经降低到较低水平,土壤 微生物活性降低,从而导致 N<sub>2</sub>O 排放通量降低,土壤 温度持续上升,因此呈线性负相关关系。可见,土壤 温度、土壤湿度和NO3-N是影响土壤N2O排放的主要 因素,而且水肥气交互作用对土壤N2O排放影响效果 明显,在某些情况下,土壤温度(湿度)对N<sub>2</sub>O排放的 影响作用会被其他环境因子的影响效果所掩盖。

# 3.3 水肥气耦合对番茄产量的影响

水肥气均会影响到番茄产量,其主要通过影响土 壤微生物活性、多样性和作物根系来影响作物产量, 不同水肥气处理使土壤环境因子状态发生改变,比如 土壤湿度、土壤温度、氧气含量和NO3-N含量等,这 些环境因子通过对土壤微生物和作物根系产生影响, 进而共同影响作物产量[43-44]。灌水和施肥量的增加 会增加作物产量的结论已经被许多研究证实[15-16],本 试验也得到相同结果,但是过量的灌水和施肥会对作 物根系和土壤微生物活性造成危害,降低作物产 量[22,45],因此,选择合适的灌水和施肥水平至关重要。 本试验中,加气灌溉会提高番茄产量,因为地下滴灌 会在滴头附近形成湿润锋,土壤会长期处在水分饱和 状态,但是地下滴灌作物根系通常会生长在滴头附 近[46],因此作物根系会处于缺氧胁迫状态[47],根系缺 氧代谢会形成有毒物质[48],抑制根系功能和植物生 长,降低作物产量,加气灌溉将水气混合物输送到作 物根部,可以有效缓解地下滴灌造成的缺氧胁迫,有 利于作物生长,提高作物产量。

# 4 结论

(1)土壤 N<sub>2</sub>O 排放通量在全生育期内呈现出先升

高后下降的趋势,灌水量、施肥量和加气量的增加均 会增加土壤 N<sub>2</sub>O 排放通量。I2 处理的 N<sub>2</sub>O 排放通量 比 I1 处理平均增加 14.8%(P>0.05), F2 处理比 F1 处 理平均增加 34.9%(P<0.05)。与 CK 处理相比, A1 处 理和 A2 处理的 N<sub>2</sub>O 排放通量分别增加 10.0%(P> 0.05)和 62.9%(P<0.05)。

(2)土壤 N<sub>2</sub>O 排放通量与土壤充水孔隙度呈指数 正相关关系,当土壤温度小于26℃时,与土壤温度呈 指数正相关关系,当土壤温度大于26℃时,与土壤温 度呈线性负相关关系,与 NO<sub>3</sub>-N 质量分数呈指数正 相关关系,多种因素共同影响 N<sub>2</sub>O 排放。

(3)综合考虑番茄产量、N<sub>2</sub>O累积排放量、灌溉 水分利用效率、氮肥偏生产力和单产N<sub>2</sub>O累积排放 量,本试验推荐施氮量为180 kg·hm<sup>-2</sup>的1倍气充分 灌溉(*K*<sub>q</sub>=1.0)为温室番茄增产、节水、减排较佳的灌 溉模式。

#### 参考文献:

- IPCC. Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis[R]. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022
- [2] HOU H J, CHEN H, CAI H J, et al. CO<sub>2</sub> and N<sub>2</sub>O emissions from Lou soils of greenhouse tomato fields under aerated irrigation[J]. *Atmospheric Environment*, 2016, 132:69–76.
- [3] WANG J, ZHANG J, MÜLLER C, et al. The mechanisms of high N<sub>2</sub>O emissions from greenhouse vegetable field soils[J]. *Clean–Soil, Air, and Water*, 2017, 45(10):1600210.
- [4] 钱刘兵,梁山峰,魏占波,等.微生物多样性损失对农田土壤CO<sub>2</sub>和N<sub>2</sub>O 排放功能稳定性的影响[J].应用生态学报,2023,34(5):1313-1319. QIAN L B, LIANG S F, WEI Z B, et al. Effect of microbial diversity loss on the functional stability of CO<sub>2</sub> production and N<sub>2</sub>O emission in agricultural soils[J]. *Chinese Journal of Applied Ecology*, 2023, 34(5):1313-1319.
- [5] 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉改善温室番茄根区土壤通气性 [J]. 农业工程学报, 2017, 33(21): 163-172. ZHU Y, CAI H J, SONG L B, et al. Oxygation improving soil aeration around tomato root zone in greenhouse[J]. *Transactions of the CSAE*, 2017, 33(21): 163-172.
- [6] 苏星源, 吴世杰, 高威, 等. 两种水分含量下生物质炭对黑土 N<sub>2</sub>O排 放及硝化反硝化基因丰度的影响[J]. 土壤, 2022, 54(5):928-935. SU X Y, WU S J, GAO W, et al. Effects of biochar on N<sub>2</sub>O emission and nitrification-denitrification gene abundances under two water status in black soils[J]. Soils, 2022, 54(5):928-935.
- [7] 刘丽君,朱启林,曹明,等. 施氮量对海南燥红壤和砖红壤 N<sub>2</sub>O/CO<sub>2</sub> 排放的影响[J]. 中国农业气象, 2022, 43(9):692-703. LIU L J, ZHU Q L, CAO M, et al. Effects of nitrogen application rate on N<sub>2</sub>O and CO<sub>2</sub> emission of dry red soil and latosol in Hainan[J]. *Chinese Jour-*

nal of Agrometeorology, 2022, 43(9):692-703.

- [8] 李银坤, 武雪萍, 郭文忠, 等. 不同氮水平下黄瓜-番茄日光温室栽培土壤 N<sub>2</sub>O 排放特征[J]. 农业工程学报, 2014, 30(23): 260-267. LI Y K, WU X P, GUO W Z, et al. Characteristics of greenhouse soil N<sub>2</sub>O emissions in cucumber-tomato rotation system under different nitrogen conditions[J]. *Transactions of the CSAE*, 2014, 30(23): 260-267.
- [9] 朱艳, 蔡焕杰, 宋利兵, 等. 基于温室番茄产量和果实品质对加气灌溉处理的综合评价[J]. 中国农业科学, 2020, 53(11):2241-2252. ZHU Y, CAI H J, SONG L B, et al. Comprehensive evaluation of different oxygation treatments based on fruit yield and quality of greenhouse tomato[J]. Scientia Agricultura Sinica, 2020, 53(11):2241-2252.
- [10] DU Y D, NIU W Q, GU X B, et al. Crop yield and water use efficiency under aerated irrigation: a meta-analysis[J]. Agricultural Water Management, 2018, 210:158-164.
- [11] CHEN H, HOU H J, WANG X Y, et al. The effects of aeration and irrigation regimes on soil CO<sub>2</sub> and N<sub>2</sub>O emissions in a greenhouse tomato production system[J]. *Journal of Integrative Agriculture*, 2018, 17 (2):449–460.
- [12] 雷宏军, 刘欢, 臧明, 等. 曝气灌溉条件下土壤 N<sub>2</sub>O 排放特征及影响因子分析[J]. 中国环境科学, 2019, 39(5):2115-2122. LEI H J, LIU H, ZANG M, et al. Characteristics and influencing factors of N<sub>2</sub>O emission from incubated soil under aerated irrigation[J]. China Environmental Science, 2019, 39(5):2115-2122.
- [13] Food and Agriculture Organization of the United Nations. FAO Statistics Databases[DB/OL]. [2023-02-10]. http://www.fao.org/faostat/zh/ #data/QC.
- [14] 赵伟霞, 蔡焕杰, 单志杰, 等. 无压灌溉日光温室番茄高产指标[J]. 农业工程学报, 2009, 25(3):16-21. ZHAO W X, CAI H J, SHAN Z J, et al. High yield indicators of greenhouse tomato under non-pressure irrigation[J]. *Transactions of the CSAE*, 2009, 25(3):16-21.
- [15] 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉对番茄植株生长、产量和果实品质的影响[J]. 农业机械学报, 2017, 48(8):199-211. ZHUY, CAI H J, SONG L B, et al. Impacts of oxygation on plant growth, yield and fruit quality of tomato[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8):199-211.
- [16] 朱艳, 蔡焕杰, 侯会静, 等. 加气灌溉对番茄根区土壤环境和产量的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(5): 157-162. ZHU Y, CAI H J, HOU H J, et al. Effects of aerated irrigation on root-zoon environment and yield of tomato[J]. Journal of Northwest A & F University: Nature Science Edition, 2016, 44(5):157-162.
- [17] 李勇, 王峰, 孙景生, 等. 内蒙古西部旱区机采棉膜下滴灌水单耦 合效应[J]. 应用生态学报, 2016, 27(3):845-854. LI Y, WANG F, SUN J S, et al. Coupling effect of water and nitrogen on mechanically harvested cotton with drip irrigation under plastic film in arid area of western Inner Mongolia, China[J]. *Chinese Journal of Applied Ecology*, 2016, 27(3):845-854.
- [18] 王京伟,李元,牛文全.地下滴灌对番茄根际微区氮循环微生物量及土壤 N<sub>2</sub>O 排放的调控机制[J].环境科学研究,2021,34(6):
   1425-1432. WANG J W, LI Y, NIU W Q. Regulation mechanism of

subsurface drip irrigation on nitrogen circulating microorganisms and N<sub>2</sub>O emission in rhizosphere microzone[J]. *Research of Environmental Sciences*, 2021, 34(6):1425–1432.

- [19] BOUWMAN A F. Direct emission of nitrous oxide from agricultural soils[J]. Nutrient Cycling in Agroecosystems, 1996, 46:53-70.
- [20] BORKEN W, MATZNER E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J]. *Global Change Biolo*gy, 2009, 15:808-824.
- [21] HARRISON K T, BEARE M H, MEENKEN E D, et al. Soil organic matter and texture affect responses to dry/wet cycles: effects on carbon dioxide and nitrous oxide emissions[J]. Soil Biology and Biochemistry, 2013, 57:43-55.
- [22] ERIKA G, KATARÍNA S, JAROSLAV Š, et al. Responses of soil microorganisms and water content in forest floor horizons to environmental factors[J]. European Journal of Soil Biology, 2013, 55:71–76.
- [23] 杜世字, 薛飞, 吴汉卿, 等. 水氮耦合对设施土壤温室气体排放的 影响[J]. 农业环境科学学报, 2019, 38(2):476-484. DU S Y, XUE F, WU H Q, et al. Interactive effect of irrigation and nitrogen fertilization on greenhouse gas emissions from greenhouse soil[J]. Journal of Agro-Environment Science, 2019, 38(2):476-484.
- [24] WEIER K L, DORAN J W, POWER J F, et al. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate[J]. *Soil Science Society of America Journal*, 1993, 57: 66–72.
- [25] SEXSTONE A J. Temporal response of soil denitrification rates to rainfall and irrigation[J]. Soil Science Society of America Journal, 1985, 49(1):99-103.
- [26] KOOL D M, DOLFING J, WRAGE N, et al. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil[J]. Soil Biology and Biochemistry, 2011, 43:174–178.
- [27] MEIJIDE A, DIEZ J A, SÁNCHEZ-MARTÍN L, et al. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate[J]. Agriculture Ecosystems & Environment, 2007, 121(4):383-394.
- [28] 周龙, 龙光强, 汤利, 等. 综合产量和土壤 N<sub>2</sub>O 排放的马铃薯施氮 量分析[J]. 农业工程学报, 2017, 33(2):155-161. ZHOU L, LONG G Q, TANG L, et al. Analysis on N application rates considering yield and N<sub>2</sub>O emission in potato production[J]. *Transactions of the CSAE*, 2017, 33(2):155-161.
- [29] 王新为, 孔庆鑫, 金敏, 等. pH值与曝气对硝化细菌硝化作用的影响[J]. 解放军预防医学杂志, 2003, 21(5):319-322. WANG X W, KONG Q X, JIN M, et al. Effect of pH and aeration on nitrification of nitrobacteria[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2003, 21(5):319-322.
- [30] 梁东丽, 吴庆强, 李生秀, 等. 旱地反硝化作用和 N<sub>2</sub>O 排放影响因子的研究[J]. 西北农林科技大学学报(自然科学版), 2007, 35(12): 93-98. LIANG D L, WU Q Q, LI S X, et al. Influential factors for denitrification and N<sub>2</sub>O emission in dry-land soil[J]. Journal of Northwest A&F University(Nature Science Edition), 2007, 35(12):93-98.
- [31] 邹建文, 黄耀, 宗良纲, 等. 稻田灌溉和秸秆施用对后季麦田 N<sub>2</sub>O 排放的影响[J]. 中国农业科学, 2003, 36(4):409-414. ZOU J W,

#### 2024年1月 段琳博,等:基于产量和N2O排放的温室番茄灌溉模式

HUANG Y, ZONG L G, et al. Effects of paddy field irrigation and straw application on  $N_2O$  emission in wheat fields in the late season [J]. *Scientia Agricultura Sinica*, 2003, 36(4):409–414.

- [32] 奚雅静, 刘东阳, 汪俊玉, 等. 有机肥部分替代化肥对温室番茄土 壞 N<sub>2</sub>O 排放的影响[J]. 中国农业科学, 2019, 52(20): 3625-3636.
  XI Y J, LIU D Y, WANG J Y, et al. Effect of organic partial replacement of inorganic fertilizers on N<sub>2</sub>O emission in greenhouse soil[J]. Scientia Agricultura Sinica, 2019, 52(20): 3625-3636.
- [33] 杜娅丹,张倩,崔冰晶,等.加气灌溉水氮互作对温室芹菜地 №20 排放的影响[J]. 农业工程学报, 2017, 33(16):127-134. DU Y D, ZHANG Q, CUI B J, et al. Effects of water and nitrogen coupling on soil №0 emission characteristics of greenhouse celery field under aerated irrigation[J]. *Transactions of the CSAE*, 2017, 33(16):127-134.
- [34] 胡正华,周迎平,崔海羚,等.昼夜增温对大豆田土壤 №0 排放的 影响[J].环境科学,2013,34(8):2961-2967. HU Z H, ZHOU Y P, CUI H L, et al. Effects of diurnal warming on soil №0 emission in soybean field[J]. Environmental Science, 2013, 34(8):2961-2967.
- [35] BUTTERBACH B K, DANNENMANN M. Denitrification and associated soil N<sub>2</sub>O emissions due to agricultural activities in a changing climate[J]. *Current Opinion in Environmental Sustainability*, 2011, 3(5): 389–395.
- [36] SMITH K. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils[J]. *Global Change Biology*, 1997, 3(4):327-338.
- [37] DAVIDSON E A, SCHIMEL J P. Microbial processes of production and consumption of nitric oxide, nitrous oxide, and methane[J]. Biogenic Trace Gases: Measuring Emissions from Soil and Water, 1995: 327-357.
- [38] COYNE M S. Biological denitrification[M]//SCHEPERS J S, RAUN W R. Nitrogen in agricultural systems. Madison, WI, ASA-CSSSA-SSSA Agronomy Monograph, 2008, 49:201–253.
- [39] 郑循华, 王明星, 王跃思, 等. 稻麦轮作生态系统中土壤湿度对 N<sub>2</sub>O产生与排放的影响[J]. 应用生态学报, 1996, 7(3):273-279. ZHENG X H, WANG M X, WANG Y S, et al. Impact of soil humidity on N<sub>2</sub>O production and emission from a rice-wheat rotation ecosystem [J]. Chinese Journal of Applied Ecology, 1996, 7(3):273-279.
- [40] CHEN H, HOU H J, HU H W, et al. Aeration of different irrigation

levels affects net global warming potential and carbon footprint for greenhouse tomato systems[J]. *Scientia Horticulturae*, 2018, 242: 10–19.

- [41] 陈慧, 商子惠, 王云霏, 等. 灌水量对温室番茄土壤CO<sub>2</sub>、N<sub>2</sub>O和CH<sub>4</sub> 排放的影响[J]. 应用生态学报, 2019, 30(9):3126-3136. CHEN H, SHANG Z H, WANG Y F, et al. Effects of irrigation amounts on soil CO<sub>2</sub>, N<sub>2</sub>O and CH<sub>4</sub> emissions in greenhouse tomato field[J]. *Chinese Journal of Applied Ecology*, 2019, 30(9):3126-3136.
- [42] HAN B, YE X H, LI W, et al. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J]. *Journal of Soils and Sediments*, 2017, 17: 2457-2468.
- [43] JAISWAL A, SRIVASTAVA J P. Changes in reactive oxygen scavenging systems and protein profiles in maize roots in response to nitric oxide under waterlogging stress[J]. *Indian Jouranl of Biochemistry and Biophysics*, 2018, 55(1):26–33.
- [44] XU C M, CHEN L P, CHEN S, et al. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice[J]. Annals of Applied Biology, 2020, 177:61-73.
- [45] 袁字霞,张富仓,张燕,等.滴灌施肥灌水下限和施肥量对温室番茄生长、产量和生理特性的影响[J]. 干旱地区农业研究, 2013, 31 (1):76-83. YUAN Y X, ZHANG F C, ZHANG Y, et al. Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse[J]. Agricultural Research in the Arid Areas, 2013, 31(1):76-83.
- [46] MACHADO R M A, ROSARIO M D, OLIVEIRA G, et al. Tomato root distribution, yield and fruit quality under subsurface drip irrigation[J]. *Plants and the Earth*, 2003, 255(1):333-341.
- [47] BHATTARAI S P, SU N, MIDMORE D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments[J]. Advances in Agronomy, 2005, 88:313-377.
- [48] XU C M, CHEN L P, CHEN S, et al. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice[J]. Annals of Applied Biology, 2020, 177:61-73.