

中文核公期刊/CSCD

请通过网上投稿系统投稿 网址:http://www.aes.org.cn

三七主根稀土元素指纹特征及产地判别

徐向东,何忠俊,梁社往,翁静,冉余艳

引用本文:

徐向东,何忠俊,梁社往,翁静,冉余艳.三七主根稀土元素指纹特征及产地判别[J].农业环境科学学报,2023,42(12):2694-2701.

在线阅读 View online: https://doi.org/10.11654/jaes.2023-0360

您可能感兴趣的其他文章

Articles you may be interested in

复合钝化剂对镉污染土壤三七生长及生理特性的影响

刘娟,李佳佳,张乃明,冯光泉 农业环境科学学报. 2020, 39(10): 2190-2197 https://doi.org/10.11654/jaes.2020-0077

钇(Y3+)对缺氮、缺磷胁迫下铜绿微囊藻生长和生理特性及藻毒素释放的影响

杜金戈, 王应军, 武阳, 成晶星 农业环境科学学报. 2017, 36(8): 1500-1507 https://doi.org/10.11654/jaes.2017-0495

外源La(Ⅲ)和Si对水稻幼苗植硅体固镧能力的影响

司勇,王丽红,周青 农业环境科学学报.2018,37(10):2101-2109 https://doi.org/10.11654/jaes.2018-0345

EDTA强化盐生植物修复Pb、Cd和盐渍化复合污染土壤

王雨涵,陈冬月,江志勇,聂文翰,张进忠 农业环境科学学报.2018,37(9):1866-1874 https://doi.org/10.11654/jaes.2018-0206

土壤镉污染北方小麦生产阈值及产区划分初探 管伟豆,肖然,李荣华,刘翔宇,潘君廷,黄永春,张增强,郭堤 农业环境科学学报. 2021, 40(5): 969–977 https://doi.org/10.11654/jaes.2020-1151

关注微信公众号,获得更多资讯信息

徐向东,何忠俊,梁社往,等.三七主根稀土元素指纹特征及产地判别[J].农业环境科学学报,2023,42(12):2694-2701. XU X D, HE Z J, LIANG S W, et al. Fingerprint characteristics and origin traceability of rare earth elements in main root of *Panax notoginseng*[J]. *Journal of Agro-Environment Science*, 2023, 42(12): 2694-2701.

三七主根稀土元素指纹特征及产地判别

徐向东1,何忠俊1*,梁社往2,翁静1,冉余艳1

(1.云南农业大学资源与环境学院,昆明 650201;2.云南农业大学农学与生物技术学院,昆明 650201)

摘 要:为探明不同产地三七中稀土元素含量和分布状况,并利用稀土元素对三七产地进行判别,采用ICP-MS对采自广西产区、 云南文山产区和云南新扩展产区的44个三七主根中16种稀土元素进行测定,并应用美国环保署(USEPA)的健康风险模型对三 七主根稀土健康风险进行评价。结果表明:稀土元素Tm和Lu未检测出,其余14种稀土元素的总含量为0.943~11.911 mg·kg⁻¹,根 据人体每日稀土允许摄入量为0.07 mg·kg⁻¹·d⁻¹计算,三七主根中稀土元素总含量不会对人体健康产生危害。三七主根中各稀土 元素平均含量大小为Ce>La>Nd>Y>Sc>Pr>Sm>Gd>Dy>Er>Yb>Eu>Tb>Ho,总体表现为轻稀土元素相对富集。对14种稀土元素进 行单因素方差分析和Duncan's多重比较表明,三七主根中稀土元素含量在不同产区存在差异,但同种稀土元素在不同产区的丰 度变化具有相似性。利用Fisher判别模型对3个三七产区主根判别的正确率分别100%、80.0%、87.5%,平均为86.4%。利用多层 感知神经网络模型对三七主根产区判别训练集的正确率为96.6%,检验集的正确率为93.3%。研究表明,三七主根中稀土元素含 量在不同产区存在差异,稀土元素可以作为三七产地判别的重要指标。

关键词:三七主根;稀土元素;食用安全性;产地溯源

中图分类号:R282.5 文献标志码:A 文章编号:1672-2043(2023)12-2694-08 doi:10.11654/jaes.2023-0360

Fingerprint characteristics and origin traceability of rare earth elements in main root of Panax notoginseng

XU Xiangdong¹, HE Zhongjun^{1*}, LIANG Shewang², WENG Jing¹, RAN Yuyan¹

(1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; 2. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China)

Abstract: This study aimed to explore the content and distribution of rare earth elements in *Panax notoginseng* from different producing areas and to distinguish the producing areas of *P. notoginseng*, using rare earth elements. The ICP-MS method was used to identify 16 rare earth elements in the main root of *P. notoginseng* collected from 44 producing areas in Guangxi, Yunnan Wenshan, and Yunnan new cultivating regions. A health risk assessment of rare earth elements in the main root of *P. notoginseng* was carried out using the health risk model of the United States Environmental Protection Agency. The results showed that rare earth elements Tm and Lu were not detected. The total content of the remaining 14 rare earth elements was $0.943-11.911 \text{ mg} \cdot \text{kg}^{-1}$. Based on the allowable daily intake(*ADI*) of 0.07 mg \cdot kg⁻¹ · d⁻¹, the total content of rare earth elements in the main root of *P. notoginseng* was not harmful to human health. The average content of each rare earth element in the main root of *P. notoginseng* was Ce>La>Nd>Y>Sc>Pr>Sm>Gd>Dy>Er>Yb>Eu>Tb>Ho, which is relatively enriched for light rare earth elements in the main root of *P. notoginseng* was different in different producing areas, but the abundance changes of the same rare earth elements in different producing areas were similar. The correct discrimination rates of the Fisher discriminant model for three main root producing areas of *P. notoginseng* were 100%, 80%, and 87.5%, respectively, with an average of

收稿日期:2023-05-09 录用日期:2023-07-31

作者简介:徐向东(1997—),男,云南曲靖人,硕士研究生,从事三七栽培及产地溯源研究。E-mail:1421264172@qq.com

^{*}通信作者:何忠俊 E-mail:hezhongjun@hotmail.com

基金项目:国家自然科学基金项目(81860679)

Project supported: The National Natural Science Foundation of China (81860679)

86.4%. The accuracy of the training set was 96.6%, and the accuracy of the test set was 93.3%, calculated using the multi-layer perceptual neural network model. The content of rare earth elements in the main root of *P. notoginseng* varies in different producing areas, and rare earth elements can be used as an important index to distinguish between the producing areas of *P. notoginseng*.

Keywords: main root of Panax notoginseng; rare earth elements; food safety; origin traceability

三七[Panax notoginseng(Burk.)F. H. Chen]是五 加科人参属植物,为多年生宿根草本。三七的主根是 其主要药用部位,是著名的血症特效药,对于治疗跌 打损伤有活血化瘀、消肿止痛的功效,是云南白药、血 塞通等著名中成药的重要原料。近年来临床表明,三 七具有抗炎、保肝、调节血糖、降血脂、抗动脉粥样硬 化、抗肿瘤、保护受损脊髓、抗氧化、抗衰老和提高人 体免疫功能等作用凹。三七是我国名贵的中药材之 一,在云药产业中有着举足轻重的地位,"文山三七" 第一批通过GAP基地认证,第一个成为国家地理标 志产品保护中药材,2016年《文山三七道地药材》行 业标准发布实施[2-3]。近年来,随着三七道地产区租 地成本的增加和连作障碍的加重,加之社会老龄化严 重,三七的需求量日益增加,三七种植区域已由文山 州扩展到周边的曲靖、昆明、玉溪和红河,甚至大理和 保山等云南西部州市也有三七的种植,云南16个州 市仅昭通市、迪庆州和怒江州无三七种植。曾经的三 七产区——广西百色处于恢复种植阶段,另外广东、 四川、重庆和贵州也有少量种植。随着三七产地的 不断扩张,三七的质量已经下降。因此,三七产地溯 源显得尤为重要。

目前中药材溯源主要是利用同位素、药效成分、 矿质元素等15-71的组成与含量差异分析,但上述方法 受气候、栽培管理技术的影响较大。稀土元素性质稳 定,植物中稀土元素含量主要与地质背景和环境气候 有关,受人类活动影响较小,是产地溯源的理想元 素^[8-10]。稀土元素(Rare earth elements)是指元素周期 表中第ⅢB族的15种镧系元素和与其化学性质相似 的Sc和Y两种元素,共由17种元素组成,但Pm属人 工放射元素,自然界中并不存在,因此一般只检测16 种稀土元素凹。稀土元素广泛存在于自然界中并且 能随食物链传递,不是植物生长发育的必需营养元 素,对植物的生长发育表现出低浓度促进,高浓度抑 制的调节功能[12]。临床上有研究表明微量的稀土元 素具有杀菌消炎、抗肿瘤、抗动脉硬化等功效;但是过 量的稀土元素会在人体血液、骨骼、大脑中积累,引起 一系列病变,危害人类健康[13-14]。三七主要种植区域 云南、广西、贵州三省份的土壤稀土元素背景值分别

为236.3、202.1、221.9 mg·kg⁻¹,均极显著高于中国土 壤背景值^[15]。植物吸收与积累稀土元素的能力与植 物所生长的土壤稀土元素背景值息息相关。彭益书 等^[16]对贵阳乌当区太子参及其种植土壤中的稀土元 素含量及两者的相关性进行分析,结果显示二者呈现 出极显著的相关性。目前国家尚未出台中药材中稀 土元素的限量标准,普遍接受朱为方等^[17]依据稀土矿 区及非矿区受害人群生物效应获得的人体每日允许 摄入量(*ADI*)0.07 mg·kg⁻¹·d⁻¹作为健康指导标准。

植物中稀土元素的组成与其生长的土壤具有较 强的相关性,近年来国内外学者对利用稀土元素进行 植源性农产品产地溯源的可行性进行了探究。林昕 等[18]利用稀土元素对云南普洱茶产地进行判别,筛选 出La、Ce、Eu和Sc作为判别指标,其Fisher线性判别 分析准确率达到94.4%。赵芳等四利用稀土元素指纹 特征判别葡萄酒产地,Fisher线性判别分析准确率为 96.49%。Marcella等^[20]发现葡萄中稀土元素含量主要 取决于生长基质中稀土元素水平,证明了稀土元素可 以作为葡萄产区判别的指标。Santos 等[21]利用稀土元 素判别南美外观十分相似的2种水果产地,线性判别 分析的准确率为83.3%。张春华等[22]筛选出Y、La、 Ce、Pr、Sm、Eu、Gd、Tb、Dy、Ho、Lu 11种稀土元素作为 有效指标,建立判别分析模型,成功区分了不同产地 的西洋参,其判别模型正确率在86%以上。但是,未 见利用稀土元素建立判别模型,进行三七产地鉴别的 报道。本文通过对三七主根中稀土元素含量测定,结 合化学计量方法,建立不同产区三七主根的判别模 型,旨在为三七道地性研究和地理标志产品保护提供 科学依据,为道地性中药材产地溯源及中药材安全提 供参考。

1 材料与方法

1.1 样品

分别在广西产区(广西靖西市、广东南雄市)、云 南文山三七主产县(丘北县、砚山县、文山县、西畴县、 马关县、麻栗坡县)、云南三七新扩展产区(昆明市、曲 靖市、玉溪市、红河州、腾冲市)采集共44个样点。其 中广西产区采集了5个样点、云南文山主产县采集了 15个样点、云南新扩展产区采集了24个样点。每个 样点随机均匀采集15~20个三七主根作为1个样本。 所有样本经云南农业大学资源与环境学院何忠俊教 授根据三七的植物形态及药材性状鉴定为五加科人 参属植物三七。

1.2 仪器

DHG-9140A 电热恒温鼓风干燥箱(上海一恒科 学仪器有限公司);DFY-500 中药材不锈钢粉碎机 (温州顶历医疗器械有限公司);240/50 型密闭微波消 解系统(美国 CEM 公司);7700X 型电感耦合等离子 体质谱仪(美国 Agilent公司)。

1.3 三七产区土壤背景及地理气候

三七种植区的地质背景和土壤类型差异较大。 广西产区的土壤母质为石灰岩,土壤类型为石灰(岩) 土;云南文山产区的土壤母质主要为石灰岩、碎屑岩 和花岗岩,土壤类型主要为红壤、黄棕壤、黄红壤、石 灰土和黄壤;云南新扩展产区的土壤母质主要为泥质 岩、紫色岩、火山灰、花岗岩和石灰岩,土壤类型主要 为紫色土、山原红壤、山地红壤、火山灰、赤红壤和黄 红壤。

三七种植区的土壤理化性质如表1所示,广西产 区的土壤pH、有机质和盐基饱和度最高,云南文山产 区的土壤容重最高,云南新扩展产区土壤中阳离子交 换量最高。

气象参数主要来自于TCMGIS-I系统,根据采

样点经纬度和海拔提取。如表2所示,从广西产区--云南文山产区--云南新扩展产区,经度、湿度、年均温 有逐渐下降的趋势,纬度、海拔、日照时数有逐渐上升 的趋势。

1.4 样品处理

将三七样品及根区土壤带回实验室,抖下根区土 壤,挑出石块和植物残体,风干后过2mm和0.25mm 筛备用。三七样品用滴加洗洁精的自来水清洗掉泥 土,再用自来水反复冲洗,最后用蒸馏水冲洗干净, 105℃下杀青30min,再在75℃下烘至质量恒定,用 不锈钢粉碎机粉碎至粒度为100~200目。

1.5 三七样品中稀土元素的检测方法

参照《食品安全国家标准 食品中多元素的测定》 (GB 5009.268—2016)测定三七样品中的稀土元素含 量。称取三七主根粉末 0.2 g于聚四氟乙烯消解管, 采用 8 mL HNO₃(65%)+2 mL H₂O₂(30%)消解体系, 消解管密封放置 1 h后放入微波消解仪进行消解。微 波消解仪的操作条件:第一步控制温度 120 °C,升温 时间 5 min,持续时间 5 min;第二步控制温度 150 °C, 升温时间 5 min,持续时间 10 min;第三步控制温度 190 °C,升温时间 5 min,持续时间 20 min。冷却后用 超纯水定容至 100 mL,然后用电感耦合等离子体质 谱仪(ICP-MS)检测供试溶液中 16种稀土元素(La、 Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc 和 Y)的含量。以内标法保证检测结果的准确性。

产区 Producing area	项目 Item	容重 Volumetric weight/ (g・cm ⁻³)	рН	有机质 Organic matter/ (g•kg ⁻¹)	阳离子交换量 Cation exchange capacity/ (cmol·kg ⁻¹)	盐基饱和度 Base saturation percentage/%
广西产区	范围	0.81~0.84	6.17~7.84	51.15~60.48	15.89~19.04	67.66~98.14
	平均值	0.84	7.11	54.81	17.34	84.55
云南文山产区	范围	0.75~1.17	4.49~6.97	9.80~44.34	8.65~23.13	11.82~81.91
	平均值	0.98	5.61	27.07	15.35	48.05
云南新扩展产区	范围	0.67~1.11	4.38~6.50	11.00~104.28	7.73~41.05	8.73~66.65
	平均值	0.86	5.48	47.88	20.21	40.38

表1 三七产区土壤理化性质 Table 1 Soil physical and chemical properties of *Panax notoginseng* producing areas

表2 3	米柱地圤境状况
------	---------

 Table 2 The environmental condition of sampling sites

产区 Producing area	样本数 Sample	经度 Longitude/(°)	纬度 Latitude/(°)	海拔 Altitude/m	年均温 Annual mean temperature/℃	湿度 Humidity/%	日照时数 Hours of sunshine/h
广西产区	5	106.05~114.14	23.08~25.18	490~970	18.2~19.9	78.3~80.3	1 525~1 581
云南文山产区	15	103.74~105.21	23.01~24.07	1 375~1 936	14.5~16.3	76.9~81.2	1 724~2 062
云南新扩展产区	24	98.50~104.20	23.30~25.68	1 780~2 314	12.9~16.4	68.5~80.2	2 054~2 352

ICP-MS的工作参数为射频功率1500W;以氦气为载体,载气流量设置为0.80L·min⁻¹,辅助气流量为0.40L·min⁻¹;等离子体气流量15L·min⁻¹;雾化室温度2℃;样品提升速率0.3r·s⁻¹。

1.6 三七主根中稀土元素健康风险评价方法

参照美国环保局(USEPA)推荐的健康风险评价 模型,人终生平均每天的污染物摄入量(*ADI*, mg· kg⁻¹·d⁻¹)的计算公式为^[23]:

$$ADI = \frac{C \times GW \times EF \times ED}{BW \times AT}$$

式中:C为三七主根粉末中16种稀土元素总含量, mg·kg⁻¹;GW为三七主根粉末的摄入量,参照2020年 版中国药典^[24]规定每人每天食用三七限量值为3~9 g·d⁻¹,本研究取其最大食用量9g·d⁻¹计算;EF为暴露 频率,一般取值为180d·a⁻¹;ED为暴露周期,一般取 值为70a;BW为人体质量,采用世界卫生组织 (WHO)推荐的标准人体质量60kg;AT为终生时间, 一般取值为365×70d。

1.7 数据统计

采用 Excel 2019 进行数据统计,采用 SPSS 26.0 进行单因素方差分析和 Duncan's 多重比较。利用 Fisher 判别分析、多层感知神经网络分析等建立判别 模型。

2 结果与分析

2.1 三七主根中稀土元素含量差异分析

44个三七主根样本中各稀土元素含量范围及平 均值如表3所示,稀土元素Tm和Lu未检出,余下14 种稀土元素在三七主根中的含量差异较大。各稀土 元素平均含量大小为Ce>La>Nd>Y>Sc>Pr>Sm>Gd> Dy>Er>Yb>Eu>Tb>Ho,其中Ce、La、Nd的平均含量较 高,分别为1.398、0.710、0.527 mg·kg⁻¹, Ho和Tb的平 均含量较低,分别为0.012、0.013 mg·kg⁻¹,总体表现为 轻稀土元素相对富集。利用3个产区三七主根中稀 土元素平均值绘制不同产区三七主根中稀土元素柱 状图,由图1可看出3个产区的总稀土元素平均值有 明显的差异,最高的广西产区平均含量为0.560 mg· kg⁻¹,云南文山产区为0.265 mg·kg⁻¹,最低的云南新 扩展产区为0.217 mg·kg⁻¹。3个产区三七主根中总 稀土元素含量方差分析显示,3个产区的稀土元素 平均值表现为广西产区显著高于云南文山产区和云 南新扩展产区,云南文山产区与云南新扩展产区差 异不显著。

	notoginseng(mg·	kg ⁻¹)	
稀土元素 Rare earth element	范围 Scope	平均值 Mean	标准差 SD
La	0.156~1.510	0.710	0.535
Ce	0.315~4.940	1.398	1.226
Pr	0.036~0.360	0.139	0.114
Nd	0.120~1.790	0.527	0.440
Sm	0.017~0.385	0.099	0.089
Eu	0.005~0.065	0.021	0.015
Gd	0.018~0.235	0.084	0.064
Tb	0.003~0.042	0.013	0.010
Dy	0.015~0.222	0.068	0.054
Ho	0.002~0.044	0.012	0.010
Er	0.006~0.111	0.034	0.027
Yb	0.006~0.108	0.031	0.027
\mathbf{Sc}	0.071~1.290	0.326	0.265
Y	0.047~1.190	0.353	0.275
Tm	ND	—	_
Lu	ND	_	_

注:ND表示未检测出。

Note: ND indicates that it was not detected.

对44个三七主根样本检测出的14种稀土元素含 量进行单因素方差分析及Duncan's多重比较的结果 如表4所示,3个产区的各稀土元素丰度变化相似,均 表现为轻稀土元素Ce、La、Nd的丰度较高,而重稀土 元素Gd、Tb、Dy、Ho、Er、Yb的丰度较低。Ho、Er、Yb 在3个产区均无显著差异,其余11种稀土元素均是 广西产区的平均含量显著高于云南文山产区和云南 新扩展产区。La、Ce、Pr、Nd、Sm、Tb、Dy、Ho、Er、Yb

表 3 三七主根中 16 种稀土元素含量(mg·kg⁻¹) Table 3 Content of 16 rare earth elements in main root of *Panax*

表4 不同产区三七主根中14种稀土元素含量分布(mg·kg⁻¹) Table 4 Content distribution of 14 rare earth elements in main root of *Panax notoginseng* from different regions(mg·kg⁻¹)

稀土元素 Rare earth element	广西产区 Guangxi	云南文山产区 Yunnan Wenshan	云南新扩展产区 Yunnan new cultivating regions
La	1.448±0.657a	$0.667{\pm}0.586\mathrm{b}$	$0.582{\pm}0.339\mathrm{b}$
Ce	3.094±1.189a	$1.501 \pm 1.466 b$	$0.981{\pm}0.665\mathrm{b}$
Pr	0.299±0.141a	$0.126 \pm 0.117 \mathrm{b}$	$0.114 \pm 0.079 \mathrm{b}$
Nd	1.127±0.572a	$0.482 \pm 0.442 \mathrm{b}$	$0.430 \pm 0.311 \mathrm{b}$
Sm	0.229±0.127a	$0.086{\pm}0.081{\rm b}$	$0.079{\pm}0.061\mathrm{b}$
Eu	0.037±0.023a	$0.017{\pm}0.014\mathrm{b}$	$0.020{\pm}0.013\mathrm{b}$
Gd	0.156±0.071a	$0.072{\pm}0.064{\rm b}$	$0.076{\pm}0.056{\rm b}$
Tb	0.023±0.010a	$0.012 \pm 0.011 \mathrm{b}$	$0.011 \pm 0.009 \mathrm{b}$
Dy	0.121±0.039a	$0.064{\pm}0.058\mathrm{b}$	$0.059{\pm}0.049\mathrm{b}$
Ho	0.020±0.006a	0.012±0.010a	0.011±0.009a
Er	0.055±0.013a	0.035±0.033a	$0.029 \pm 0.024a$
Yb	0.050±0.019a	0.033±0.033a	0.027±0.023a
\mathbf{Sc}	0.633±0.344a	$0.285{\pm}0.128\mathrm{b}$	$0.288{\pm}0.297\mathrm{b}$
Y	0.543±0.123a	$0.319{\pm}0.285\mathrm{b}$	$0.334{\pm}0.283\mathrm{b}$

注:数据均为x±S;同行不同小写字母表示差异显著(P<0.05)。 Note:The data are x±S; Different lowercase letters indicate significant differences(P<0.05).

的平均值表现为云南文山产区高于云南新扩展产区,Eu、Gd、Sc、Y的平均值表现为云南新扩展产区高于云南文山产区,但14种稀土元素在2个产区的差异均不显著。

2.2 三七主根中稀土元素健康风险评价

с **р**

44个三七主根样本中稀土元素的含量为0.943~ 11.911 mg·kg⁻¹,平均值为3.815 mg·kg⁻¹,不同样本含量 变幅很大。参照美国环保局推荐的健康风险评价模 型,计算居民食用三七主根摄入稀土元素的日均摄入 量(表5),44个三七主根样本中稀土元素日均最大的

|--|

Table 5 Rare earth elements content and ADI value in main root

of Panax notoginseng							
项目 Item	范围 Scope/ (mg·kg ⁻¹)	平均值 Mean/ (mg•kg ⁻¹)	ADI最大值 ADI maximum value/ (mg·kg ⁻¹ ·d ⁻¹)	ADI平均值 ADI average value/ (mg·kg ⁻¹ ·d ⁻¹)			
$\sum \text{REEs}$	0.943~11.911	3.815	0.000 88	0.000 28			
Σ LREEs	0.648~9.770	2.893	0.000 72	0.000 21			
Σ HREEs	0.213~2.547	0.922	0.000 19	0.000 07			

注: Σ REEs 表示总稀土; Σ LREEs 表示轻稀土; Σ HREEs 表示重稀土。

Note: Σ REEs indicate total rare earths; Σ LREEs indicate light rare earths; Σ HREEs indicate heavy rare earths.

*ADI*值为0.000 88 mg·kg⁻¹·d⁻¹,平均*ADI*值为0.000 28 mg·kg⁻¹·d⁻¹,远小于指导值0.07 mg·kg⁻¹·d⁻¹。因此,供试三七主根稀土元素含量在安全食用范围内。

2.3 基于Fisher判别分析的三七主根产地判别模型

以3个产区存在显著差异的11种稀土元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Sc、Y)作为自变量,建 立三七产地判别模型如下:

 $Y_{
m free} = 28.734X_{
m La} - 5.961X_{
m Ce} - 59.611X_{
m Pr} - 22.235X_{
m Nd} + 366.080X_{
m Sm} - 1 447.878X_{
m Eu} + 369.976X_{
m Gd} - 4457.669X_{
m Tb} + 493.363X_{
m Dy} + 21.306X_{
m Se} - 10.048X_{
m Y} - 19.652$

 $Y_{\pm tl1} = 7.581X_{La} + 1.436X_{Ce} - 167.375X_{Pr} + 41.560X_{Nd} - 51.652X_{Sm} - 135.391X_{Eu} - 5.813X_{Cd} + 177.427X_{Tb} + 17.500X_{Dy} + 7.661X_{Se} - 1.264X_{Y} - 3.108$

 $Y_{\tilde{m}\tilde{t}^{*}\bar{R}} = 5.044X_{\text{La}} - 0.679X_{\text{Ce}} - 22.371X_{\text{Pr}} + 2.703X_{\text{Nd}} - 22.169X_{\text{Sm}} + 33.082X_{\text{Eu}} + 63.524X_{\text{Cd}} - 373.274X_{\text{Tb}} + 26.424X_{\text{Dy}} + 2.975X_{\text{Se}} + 1.016X_{\text{Y}} - 2.175$

利用 Fisher 判别模型对三七主根样品产地判别的结果如表6所示。结果显示,回代检验中,44个样本中有6个被错判,整体判别正确率为86.4%,其中广西产区的判别正确率为100%,云南文山产区的判别正确率为87.5%。要说明的是云南文山紧邻云南新扩展产区的红河州,所以云南文山产区有3个样本被误判在云南新扩展产区,云南新扩展产区也是有3个样本被误判在云南新扩展产区之间没有误判。三七道地产区——云南文山产区的判别正确率为80.0%,判别效果较为良好,可实际应用于三七主根产品的产地溯源,为三七道地性研究和地理标志产品保护提供科学依据。

表6 基于Fisher判别分析的三七主根产地判别结果

Table 6 Geographical discrimination in main root of Panax

notoginseng based on Fisher discriminant analysis

产区 Producing area	广西 产区 Guangxi	云南文山 产区 Yunnan Wenshan	云南新扩展产区 Yunnan new cultivating regions	总数 Sum	正确率 Accuracy/ %
广西产区	5	0	0	5	100
云南文山产区	0	12	3	15	80.0
云南新扩展产区	0	3	21	24	87.5

2.4 基于多层感知神经网络模型(MLP)的三七主根 产区判别

本研究以三七主根中的14种稀土元素作为输入 变量,以3个产区作为输出变量。将44个样本随机分

为训练集(29个)、检验集(15个),运用多层感知神经 网络建立判别模型。对三七主根中稀土元素的14个 协变量数据进行统一标准化处理,作为网络输入层, 输入层设定1个隐含层,隐含层个数为4,隐藏层激活 函数为双曲正切,样本的3个产区作为网络输出层。 同时采用 Softmax 作为输出层的激活函数,以标度共 扼梯度法作为训练方法进行三七产区判别分类预测。 结果如表7所示,训练集、检验集各产区预测正确率 均为88%以上。训练集各产区平均预测正确率为 96.6%,其中广西产区的预测正确率为100%,云南文 山产区的预测正确率为90.9%,云南新扩展产区的预 测正确率为100%。训练集29个样本中有1个样本预 测错误,即云南文山产区有1个样本被误判为云南新 扩展产区。检验集各产区平均预测正确率为93.3%, 其中广西产区的预测正确率为100%,云南文山产区 的预测正确率为100%,云南新扩展产区的预测正确 率为88.9%。检验集15个样本中也是有1个样本预 测错误,即云南新扩展产区有1个样本被误判为云南 文山产区。上述结果表明,基于三七主根稀土元素指 纹特征,结合多层感知神经网络技术能够很好地对不 同产区三七主根样本进行产地判别。

表7 基于 MLP 法分类预测不同产区三七主根的判别结果

 Table 7 Geographical discrimination of main root in Panax

 notoginseng based on MLP

		最后			
原属判别 Original category		广西产区 Guangxi	云南文山 产区 Yunnan Wenshan	云南新扩展 产区 Yunnan new cultivating regions	正确率 Accuracy/ %
训练集	广西产区	3	0	0	100
	云南文山产区	0	10	1	90.9
	云南新扩展产区	0	0	15	100
	平均判别率				96.6
检验集	广西产区	2	0	0	100
	云南文山产区	0	4	0	100
	云南新扩展产区	0	1	8	88.9
	平均判别率				93.3

3 讨论

稀土元素是影响中药材质量的重要因素,与药用 植物的种子发芽、根系生长、总生物量积累、次生代谢 产物的产生息息相关^[12]。但人体通过食物、饮用水及 药材等摄入过量稀土元素会对健康造成不可忽视的 危害。本研究的三七主根稀土元素含量均在质量安 全范围内,服用三七的稀土元素健康风险较小。中药 材的药性讲究道地性,只有产自其道地产区的中药材 才能发挥出最大药效^[25-26]。市场上三七的外观相似, 一般消费者难以区分它们的质量及产地,出现了以次 充好、真假难辨的现象。从而时常发生贸易纠纷,损 害消费者和道地三七产区文山本土企业利益。道地 药材形成的实质源于产地,解决三七产地判别问题成 为关键。

稀土元素广泛存在于自然界中且性质稳定,多以 难溶性的氧化物和含氧酸盐化合物的形式存在,其含 量主要与成土母质、气候、成土过程和黏粒的含量有 关,目毒性低,在植物中含量普遍较低,不同产地三七 主根中稀土元素含量取决于其生长环境的土壤背景 值[27-28]。本研究依据特定产地的植物产品中稀土元 素具有指纹特征的原理进行产地溯源。结果表明:不 同产地来源的三七主根中稀土元素含量有一定地域 性的差异,广西产区的稀土元素含量显著高于云南文 山产区和云南新扩展产区。广西海拔低、气温高、湿 度大、日照较少,与云南的气候有很大差异,而云南2 个产区的气候环境却无特别大的差别,另外,更为重 要的是广西产区采样点的土壤母质为石灰岩,土壤类 型为石灰(岩)土,云南2个产区采样点的土壤母质主 要为石灰岩、花岗岩、泥质岩和紫色岩,土壤类型多为 黄壤、紫色土、黄红壤及山原红壤。魏复盛等時的研 究表明:虽然石灰岩中自身的稀土元素含量并不高. 但由于石灰岩会在特殊的化学风化成土过程中富集 稀土,从而使得土壤类型为石灰(岩)土的稀土背景值 偏高。因此广西产区的稀土元素总量高于云南2个 产区,而云南2个产区的稀土元素含量差异不显著。

目前对三七产地判别的研究较少,梁社往等¹⁵利 用稳定同位素指纹特征对三七主根进行产地溯源,其 Fisher 判别分析平均正确率为 84.09%,三七道地产 区——云南文山产区的判别正确率为 76.47%,判别 正确率略低于本研究,这可能是因为同位素受施肥和 田间管理的影响较大,而稀土受人为因素影响不大。张 棚等¹²⁹利用 Se、Cd等 11 种微量元素对三七主根及侧 根进行产地判别,产地判别正确率在 90% 以上,判别 正确率比本研究高,这可能是因为采样点的数量及均 匀性不同,张棚等的研究仅在文山州丘北县、红河州 个旧市、曲靖市沾益县、师宗县和罗平县 5 个县市进 行采样,而本研究的采样点数目多且空间范围较大, 共在 13 个县市进行采样。利用稀土元素进行其他植 源性产品的研究较多。张春华等¹²¹利用稀土元素对

www.aes.org.cn

农业环境科学学报 第42卷第12期

产自我国山东、吉林和国外的西洋参进行产地判别, 其判别模型正确率在86%以上,与本研究的区别在 于样品来源的空间距离较大。李安等¹³⁰¹将稳定同位 素和稀土元素结合进行大桃产地判别,其Fisher判别 正确率在95%以上,比本研究的判别率高,这主要是 因为其溯源指标结合了稀土元素和稳定同位素,构建 了更稳健有效的判别模型。本研究利用2种判别方 法对3个产区的三七主根进行判别,2种判别模型中, 广西产区的判别率均为100%,误判均是出现在云南 文山产区与云南新扩展产区之间。这是由于云南新 扩展产区中一些样本的采样点是在与云南文山边界 紧邻的县区.2个产区边界气候环境与土壤条件较为 相似,所以模型中出现了2个产区之间的误判。为了 提高三七溯源的准确率,后续研究应增加建模样本数 量、提高采样点分布均匀性、结合其他指标进行多方 面多层次的分析,结合多种判别模型,建立多指标的 三七产地溯源数据库[30]。

4 结论

不同产地来源的三七主根中稀土元素指纹特征 呈现地域性差异,利用2种判别分析技术对三七主根 样本进行产地判别,Fisher判别整体判别正确率为 86.4%,多层感知神经网络分析法整体判别正确率在 90%以上,对三七道地产区——云南文山产区的判别 率均在80%以上。基于稀土元素指纹特征结合化学 计量法能够较好地判别不同产区的三七主根。

参考文献:

- [1] 李耿,陈洁,李振坤,等. 三七专利数据分析与对产业发展启示[J].
 中国中药杂志, 2020, 45(5):1011-1022. LI G, CHEN J, LI Z K, et al. Analysis of patent data of *Panax notoginseng* and enlightenment of industrial development[J]. *China Journal of Chinese Materia Medica*, 2020, 45(5):1011-1022.
- [2] 崔秀明,朱艳.三七实用栽培技术[M]. 福州:福建科学技术出版社,
 2013. CUI X M, ZHU Y. Practical cultivation techniques of *Panax notoginseng*[M]. Fuzhou: Fujian Science and Technology Press, 2013.
- [3] 崔秀明, 雷绍武. 三七栽培技术[M]. 昆明:云南科技出版社, 2012.
 CUI X M, LEI S W. Cultivation techniques of *Panax notoginseng*[M].
 Kunming: Yunnan Science and Technology Press, 2012.
- [4] 崔秀明,杨野,董丽,等.三七栽培学[M].北京:北京科学出版社,
 2017. CUIX M, YANG Y, DONG L, et al. *Panax notoginseng* cultivation science[M]. Beijing: Beijing Science Press, 2017.
- [5] 梁社往,何忠俊,熊俊芬,等.基于稳定同位素指纹的春三七主根产地判别研究[J].中国中药杂志,2021,46(3):560-566. LIANG S
 W, HE Z J, XIONG J F, et al. Origin traceability of main root of spring *Panax notoginseng* based on stable isotope fingerprint[J]. *China Jour-*

- [6] 许晨新,毛艺蓓,刘圣金,等.基于指纹图谱和化学计量学的白芍产 地溯源和质量评价[J]. 食品安全质量检测学报, 2022, 13(6):1849– 1858. XU C X, MAO Y B, LIU S J, et al. Geographical origin traceability and quality evaluation of *Paeonia lactiflora* based on fingerprint and stoichiometry[J]. *Journal of Food Safety & Quality*, 2022, 13(6): 1849–1858.
- [7]李富荣,刘雯雯,文典,等.基于矿质元素指纹分析的陈皮产地溯源研究[J]. 食品工业科技, 2022, 43(11):295-302. LIFR, LIUWW, WEND, et al. Study on origin tracing of dried tangerine peel using mineral element fingerprints[J]. Science and Technology of Food Industry, 2022, 43(11):295-302.
- [8] MA G Z, ZHANG Y B, ZHANG J Y, et al. Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements:taking Dongting Biluochun as an example[J]. Food Control, 2016, 59:714–720.
- [9] 聂刚,梁灵,李忠宏,等.陕南茶叶稀土元素产地特征研究[J].中国稀土学报,2014,32(6):758-763. NIE G,LIANG L,LI Z H, et al. Origin characteristics of rare earth elements in tea in southern Shaanxi Province[J]. Journal of the Chinese Society of Rare Earths, 2014, 32 (6):758-763.
- [10] 唐偲雨, 刘毅, 王晶, 等. 重庆地区茶叶矿质元素产地特性研究[J]. 食品学报, 2013, 34(2):227-230. TANG S Y, LIU Y, WANG J, et al. Origin characteristics of tea from different areas in Chongqing based on mineral element analysis[J]. Food Science, 2013, 34(2):227-230.
- [11] D'ANNTONE C, PUNTURO R, VACCARO C. Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna(Sicily, Italy)[J]. Environmental Monitoring & Assessment, 2017, 189(4):160.
- [12] ZHANG C H, LI Q, ZHANG M, et al. Effects of rare earth elements on growth and metabolism of medicinal plants[J]. Acta Pharmaceutica Sinica B, 2013, 3(1):20–24.
- [13] 宋雁, 刘兆平, 贾旭东.稀土元素的毒理学安全性研究进展[J].卫 生研究, 2013, 42(5):885-892. SONG Y, LIU Z P, JIA X D. Research progress on toxicological safety of rare earth elements[J]. Journal of Hygiene Research, 2013, 42(5):885-892.
- [14] 李小飞, 陈志彪, 张永贺, 等. 稀土矿区土壤和蔬菜稀土元素含量及其健康风险评价[J]. 环境科学学报, 2013, 33(3):835-843. LIXF, CHENZB, ZHANGYH, et al. Concentrations and health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province[J]. Acta Scientiae Circumstantiae, 2013, 33 (3):835-843.
- [15] 魏复盛,刘廷良,滕恩江,等.我国土壤中稀土元素背景值特征[J]. 环境科学, 1991, 12(5):78. WEIFS, LIUTL, TENGEJ, et al. Background value characteristics of rare earth elements in soil of China[J]. Environmental Science, 1991, 12(5):78-82.
- [16] 彭益书,陈蓉,杨瑞东,等.贵阳乌当区太子参及其种植土壤稀土 元素分布特征[J].河南农业科学,2015,44(1):45-51. PENG Y S, CHEN R, YANG R D, et al. Distribution characteristics of rare earth elements in *Pseudostellaria heterophylla* and planting soil in Wudang district of Guiyang City[J]. *Journal of Henan Agricultural Sci-*

ences, 2015, 44(1):45-51.

- [17] 朱为方, 徐素琴, 邵萍萍, 等. 赣南稀土区生物效应研究:稀土日允 许摄入量[J]. 中国环境科学, 1997, 17(1):65-68. ZHU W F, XU S Q, SHAO P P, et al. Investigation on intake allowance of rare earth: a study on bio-effect of rare earth in south Jiangxi[J]. *China Environmental Science*, 1997, 17(1):65-68.
- [18] 林昕,黎其万,和丽忠,等.基于稀土元素指纹分析判别普洱古树茶和台地茶的研究[J].现代食品科技,2013,29(12):2921-2925.
 LIN X, LI Q W, HE L Z, et al. Application of heavy rare earth element fingerprints in discrimination of Pu'er old plant tea and tableland tea
 [J]. Modern Food Science and Technology, 2013, 29(12):2921-2925.
- [19] 赵芳, 林立, 孙翔宇, 等. 基于稀土元素指纹分析识别葡萄酒原产 地[J]. 现代食品科技, 2015, 31(2):261-267. ZHAO F, LIN L, SUN X Y, et al. Identification of wine of origins using rare earth element fingerprinting[J]. Modern Food Science and Technology, 2015, 31 (2):261-267.
- [20] MARCELLA B, PIERPAOLO Z, ERISTANNA P, et al. The distribution of rare earth elements discriminates the growth substrate of *Vitis vinifera* L.[J]. *Chemosphere*, 2020, 266:128993.
- [21] SANTOS V S, NARDINI V, CUNHA L C, et al. Identification of species of the Euterpe genus by rare earth elements using inductively coupled plasma mass spectrometry and linear discriminant analysis[J]. *Food Chemistry*, 2014, 153(12):334-339.
- [22] 张春华, 陈春桃, 陈亮, 等. 西洋参中稀土元素的测定及其在产地 溯源中的应用[J]. 中国测试, 2022, 48(3):72-77. ZHANG C H, CHEN C T, CHEN L, et al. Determination of rare earth elements and application to identify the geographical origin of American ginseng[J]. *China Measurement & Test*, 2022, 48(3):72-77.
- [23] United States Environmental Protection Agency, Risk assessment guidance for super fund volume 1: human health evaluation manual (Part A)[R]. Washington: United States Environmental Protection A-gency, 1989.
- [24] 国家药典委员会. 中华人民共和国药典·一部[M]. 北京:中国医药 科技出版社, 2020. China Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China. Volume I [M]. Beijing: Chi-

na Medical and Technology Press, 2020.

- [25] 崔秀明, 徐珞珊, 王强, 等. 云南三七道地产区地质背景及土壤理 化状况分析[J]. 中国中药杂志, 2005(5):332-335. CUI X M, XU L S, WANG Q, et al. Analysis on the geologic background and physicochemical properties of soil for the cultivation of *Panax notoginseng* in Yunnan Province[J]. *China Journal of Chinese Materia Medica*, 2005(5):332-335.
- [26] 程显隆, 郭晓晗, 李明华, 等. 道地性和生产规范性是中药材质量 属 性形成的关键[J]. 中国现代中药, 2020, 22(7):991-995. CHENG X L, GUO X H, LI M H, et al. Daodi authenticity and production standardization are the key to the formation of quality attributes of Chinese materia medica[J]. *Modern Chinese Medicine*, 2020, 22 (7):991-995.
- [27] 刘永林, 雒昆利, 袁余洋. 重庆市江津区表层土壤中稀土元素含量 与分布特征[J]. 中国稀土学报, 2020, 38(2):215-224. LIU Y L, LUO K L, YUAN Y Y. Content and spatial distribution characteristics of rare earth elements in surface soil of Jiangjin district, Chongqing City[J]. Journal of the Chinese Society of Rare Earths, 2020, 38(2): 215-224.
- [28] 郗秀平,赵述华,杨坤,等.深圳土壤稀土元素的背景含量和影响 因素研究[J].中国环境科学,2021,41(5):2362-2373. XI X P, ZHAO S H, YANG K, et al. The background concentration of rare earth element and its impact factor in soil of Shenzhen City[J]. China Environmental Science, 2021,41(5):2362-2373.
- [29] 张棚, 张希, 杨雪妍, 等. 基于微量元素分析的三七产地及其主侧 根鉴别[J]. 浙江农业学报, 2021, 33(7):1300-1308. ZHANG P, ZHANG X, YANG X Y, et al. Discriminant analysis of origin of *Panax notoginseng* and its main roots and lateral roots based on trace element analysis[J]. *Acta Agriculturae Zhejiangensis*, 2021, 33(7): 1300-1308.
- [30] 李安, 陈秋生, 赵杰, 等. 基于稳定同位素与稀土元素指纹特征的 大桃产地判别分析[J]. 食品科学, 2020, 41(6):322-328. LI A, CHEN Q S, ZHAO J, et al. Discriminations of the geographical origin of peach based on stable isotope and rare earth element fingerprint characteristics[J]. Food Science, 2020, 41(6):322-328.